Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification

Frese M-A, Dierks T (2009)
CHEMBIOCHEM 10(3): 425-427.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Frese, Marc-Andre; Dierks, ThomasUniBi
Abstract / Bemerkung
Oxidation of a specific cysteine residue to C(alpha)-formylglycine is a novel post-translational modification that is directed by a short recognition motif commonly found in pro- and eukaryotic sulfatases. As recently shown by C. Bertozzi and co-workers, this system can be employed in protein engineering to equip proteins with genetically encoded aldehyde tags for site-specific labeling, conjugation and immobilization.
Stichworte
enzymes; protein; modifications; protein engineering; aldehyde tag; formylglycine
Erscheinungsjahr
2009
Zeitschriftentitel
CHEMBIOCHEM
Band
10
Ausgabe
3
Seite(n)
425-427
ISSN
1439-4227
eISSN
1439-7633
Page URI
https://pub.uni-bielefeld.de/record/1635473

Zitieren

Frese M-A, Dierks T. Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification. CHEMBIOCHEM. 2009;10(3):425-427.
Frese, M. - A., & Dierks, T. (2009). Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification. CHEMBIOCHEM, 10(3), 425-427. https://doi.org/10.1002/cbic.200800801
Frese, Marc-Andre, and Dierks, Thomas. 2009. “Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification”. CHEMBIOCHEM 10 (3): 425-427.
Frese, M. - A., and Dierks, T. (2009). Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification. CHEMBIOCHEM 10, 425-427.
Frese, M.-A., & Dierks, T., 2009. Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification. CHEMBIOCHEM, 10(3), p 425-427.
M.-A. Frese and T. Dierks, “Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification”, CHEMBIOCHEM, vol. 10, 2009, pp. 425-427.
Frese, M.-A., Dierks, T.: Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification. CHEMBIOCHEM. 10, 425-427 (2009).
Frese, Marc-Andre, and Dierks, Thomas. “Formylglycine Aldehyde Tag-Protein Engineering through a Novel Post-translational Modification”. CHEMBIOCHEM 10.3 (2009): 425-427.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes.
Krüger T, Weiland S, Falck G, Gerlach M, Boschanski M, Alam S, Müller KM, Dierks T, Sewald N., Angew Chem Int Ed Engl 57(24), 2018
PMID: 29579347
Immobilisation of a thrombopoietin peptidic mimic by self-assembled monolayers for culture of CD34+ cells.
Lee EJ, Be CL, Vinson AR, Riches AG, Fehr F, Gardiner J, Gengenbach TR, Winkler DA, Winkler DA, Haylock D., Biomaterials 37(), 2015
PMID: 25453940
In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I).
Knop M, Engi P, Lemnaru R, Seebeck FP., Chembiochem 16(15), 2015
PMID: 26403223
PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity.
Sur S, Qiao Y, Fries A, O'Meally RN, Cole RN, Kinzler KW, Vogelstein B, Zhou S., Sci Rep 5(), 2015
PMID: 26678960
A portable and chromogenic enzyme-based sensor for detection of abrin poisoning.
Cho H, Jaworski J., Biosens Bioelectron 54(), 2014
PMID: 24334282
Site-specific chemical protein conjugation using genetically encoded aldehyde tags.
Rabuka D, Rush JS, deHart GW, Wu P, Bertozzi CR., Nat Protoc 7(6), 2012
PMID: 22576105
Aromatic aldehyde and hydrazine activated peptide coated quantum dots for easy bioconjugation and live cell imaging.
Iyer G, Pinaud F, Xu J, Ebenstein Y, Li J, Chang J, Dahan M, Weiss S., Bioconjug Chem 22(6), 2011
PMID: 21553893
Cofactor-independent oxidases and oxygenases.
Fetzner S, Steiner RA., Appl Microbiol Biotechnol 86(3), 2010
PMID: 20157809

22 References

Daten bereitgestellt von Europe PubMed Central.

Introducing genetically encoded aldehydes into proteins.
Carrico IS, Carlson BL, Bertozzi CR., Nat. Chem. Biol. 3(6), 2007
PMID: 17450134
A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016
1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.
Boltes I, Czapinska H, Kahnert A, von Bulow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Uson I., Structure 9(6), 2001
PMID: 11435113
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T, Schmidt B, von Figura K., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342345
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J. 18(8), 1999
PMID: 10205163
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.
Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A., Cell 113(4), 2003
PMID: 12757706
Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K., J. Biol. Chem. 273(40), 1998
PMID: 9748219
Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
Miech C, Dierks T, Selmer T, von Figura K, Schmidt B., J. Biol. Chem. 273(9), 1998
PMID: 9478923
The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase.
Szameit C, Miech C, Balleininger M, Schmidt B, von Figura K, Dierks T., J. Biol. Chem. 274(22), 1999
PMID: 10336424
A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes.
Berteau O, Guillot A, Benjdia A, Rabot S., J. Biol. Chem. 281(32), 2006
PMID: 16766528
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.
Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG., Proc. Natl. Acad. Sci. U.S.A. 103(1), 2005
PMID: 16368756
Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., J. Biol. Chem. 283(26), 2008
PMID: 18408004
In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters.
Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ., Biochemistry 47(28), 2008
PMID: 18558715
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR., J. Biol. Chem. 283(29), 2008
PMID: 18390551
Molecular characterization of the human Calpha-formylglycine-generating enzyme.
Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T., J. Biol. Chem. 280(15), 2005
PMID: 15657036

AUTHOR UNKNOWN, 0

Harris, Nat. Rev. Drug Discovery 2(), 2003
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19130455
PubMed | Europe PMC

Suchen in

Google Scholar