Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory

Budke C, Heggemann C, Koch M, Sewald N, Koop T (2009)
Journal of Physical Chemistry B 113(9): 2865-2873.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
The Ostwald ripening of polycrystalline ice in aqueous Sucrose Solutions was investigated experimentally. The kinetics of this ice recrystallization process was studied at temperatures between -6 and -10 degrees C and varying ice volume fractions. Using the theory of Lifshitz, Slyozov, and Wagner (LSW), the diffusion-limited rate constant for ice recrystallization was determined. Also, the effects of synthetic analogues of natural antifreeze glycoproteins (AFGP) were studied. These analogues synAFGPmi (i = 3-5) contained monosaccharide side groups instead of disaccharide side groups that occur in natural AFGP. In order to account for the inhibition effect of the synAFGPmi, we have modified classical LSW theory, allowing for the derivation of inhibition rate constants. It was found that the investigated synAFGPmi inhibit ice recrystallization at concentrations down to similar to 3 mu g mL(-1) or, equivalently, similar to 1 mu mol L-1 for the largest synAFGPmi investigated: synAFGPm5. Hence, our new method is capable of quantitatively assessing the efficiency of very similar AFGP with a sensitivity that is at least 2 orders of magnitude larger than that typical for quantitative thermal hysteresis measurements.
Erscheinungsjahr
2009
Zeitschriftentitel
Journal of Physical Chemistry B
Band
113
Ausgabe
9
Seite(n)
2865-2873
ISSN
1520-6106
eISSN
1520-5207
Page URI
https://pub.uni-bielefeld.de/record/1635454

Zitieren

Budke C, Heggemann C, Koch M, Sewald N, Koop T. Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory. Journal of Physical Chemistry B. 2009;113(9):2865-2873.
Budke, C., Heggemann, C., Koch, M., Sewald, N., & Koop, T. (2009). Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory. Journal of Physical Chemistry B, 113(9), 2865-2873. https://doi.org/10.1021/jp805726e
Budke, Carsten, Heggemann, Carolin, Koch, M., Sewald, Norbert, and Koop, Thomas. 2009. “Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory”. Journal of Physical Chemistry B 113 (9): 2865-2873.
Budke, C., Heggemann, C., Koch, M., Sewald, N., and Koop, T. (2009). Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory. Journal of Physical Chemistry B 113, 2865-2873.
Budke, C., et al., 2009. Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory. Journal of Physical Chemistry B, 113(9), p 2865-2873.
C. Budke, et al., “Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory”, Journal of Physical Chemistry B, vol. 113, 2009, pp. 2865-2873.
Budke, C., Heggemann, C., Koch, M., Sewald, N., Koop, T.: Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory. Journal of Physical Chemistry B. 113, 2865-2873 (2009).
Budke, Carsten, Heggemann, Carolin, Koch, M., Sewald, Norbert, and Koop, Thomas. “Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory”. Journal of Physical Chemistry B 113.9 (2009): 2865-2873.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes.
Rahman AT, Arai T, Yamauchi A, Miura A, Kondo H, Ohyama Y, Tsuda S., Sci Rep 9(1), 2019
PMID: 30760774
Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP).
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N., Beilstein J Org Chem 15(), 2019
PMID: 31435440
Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions.
van Westen T, Groot RD., Cryst Growth Des 18(4), 2018
PMID: 29651228
Structure of a bacterial ice binding protein with two faces of interaction with ice.
Mangiagalli M, Sarusi G, Kaleda A, Bar Dolev M, Nardone V, Vena VF, Braslavsky I, Lotti M, Nardini M., FEBS J 285(9), 2018
PMID: 29533528
Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization.
Sproncken CCM, Surís-Valls R, Cingil HE, Detrembleur C, Voets IK., Macromol Rapid Commun 39(17), 2018
PMID: 29635766
Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis.
Urbańczyk M, Góra J, Latajka R, Sewald N., Amino Acids 49(2), 2017
PMID: 27913993
Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria.
Mangiagalli M, Bar-Dolev M, Tedesco P, Natalello A, Kaleda A, Brocca S, de Pascale D, Pucciarelli S, Miceli C, Braslavsky I, Lotti M., FEBS J 284(1), 2017
PMID: 27860412
Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharides.
Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T., Sci Rep 7(), 2017
PMID: 28157236
Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
Olijve LL, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK., Proc Natl Acad Sci U S A 113(14), 2016
PMID: 26936953
Interaction of ice binding proteins with ice, water and ions.
Oude Vrielink AS, Aloi A, Olijve LL, Voets IK., Biointerphases 11(1), 2016
PMID: 26787386
Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.
Nagel L, Budke C, Erdmann RS, Dreyer A, Wennemers H, Koop T, Sewald N., Chemistry 18(40), 2012
PMID: 22930587
Antifreeze glycopeptide diastereomers.
Nagel L, Budke C, Dreyer A, Koop T, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209499
Ultra-slow water diffusion in aqueous sucrose glasses.
Zobrist B, Soonsin V, Luo BP, Krieger UK, Marcolli C, Peter T, Koop T., Phys Chem Chem Phys 13(8), 2011
PMID: 21229162
Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.
Nagel L, Plattner C, Budke C, Majer Z, DeVries AL, Berkemeier T, Koop T, Sewald N., Amino Acids 41(3), 2011
PMID: 21603949
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19708116
PubMed | Europe PMC

Suchen in

Google Scholar