Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum

Hempel J, Zehner S, Goettfert M, Patschkowski T (2009)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Hempel, Jana; Zehner, Susanne; Goettfert, Michael; Patschkowski, ThomasUniBi
Abstract / Bemerkung
Proteins from the supernatant of Bradyrhizobium japonicum were separated by two-dimensional gel electrophoresis and stained with Coomassie. This revealed more than 100 protein spots. Sixty-eight proteins were identified by mass spectrometry. Thirty-five are predicted to contain an N-terminal signal peptide characteristic for proteins transported by the general secretory pathway. Most of these appear to be substrate-binding proteins of the ABC transported family. Ten proteins were categorized as unclassified conserved or hypothetical. None of the proteins has similarity to proteins transported by a type I secretion system or to autotransporters. Three of the proteins might be located in the outer membrane. The addition of genistein led to changes in the spot pattern of three flagellar proteins and resulted in the identification of the nodulation outer protein Pgl. Moreover, the application of shot-gun mass spectrometry resulted in the first-time identification of NopB. NopH and NopT, which were present only after genistein induction. Replacing genistein with daidzein or coumestrol reduced the amount of the type III-secreted protein GunA2. (C) Elsevier B.V. All rights reserved.
Bradyrhizobium japonicum; Nodulation outer protein; Symbiosis; Genistein; Secretome
Page URI


Hempel J, Zehner S, Goettfert M, Patschkowski T. Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. JOURNAL OF BIOTECHNOLOGY. 2009;140(1-2):51-58.
Hempel, J., Zehner, S., Goettfert, M., & Patschkowski, T. (2009). Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. JOURNAL OF BIOTECHNOLOGY, 140(1-2), 51-58.
Hempel, Jana, Zehner, Susanne, Goettfert, Michael, and Patschkowski, Thomas. 2009. “Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum”. JOURNAL OF BIOTECHNOLOGY 140 (1-2): 51-58.
Hempel, J., Zehner, S., Goettfert, M., and Patschkowski, T. (2009). Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. JOURNAL OF BIOTECHNOLOGY 140, 51-58.
Hempel, J., et al., 2009. Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. JOURNAL OF BIOTECHNOLOGY, 140(1-2), p 51-58.
J. Hempel, et al., “Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum”, JOURNAL OF BIOTECHNOLOGY, vol. 140, 2009, pp. 51-58.
Hempel, J., Zehner, S., Goettfert, M., Patschkowski, T.: Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. JOURNAL OF BIOTECHNOLOGY. 140, 51-58 (2009).
Hempel, Jana, Zehner, Susanne, Goettfert, Michael, and Patschkowski, Thomas. “Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum”. JOURNAL OF BIOTECHNOLOGY 140.1-2 (2009): 51-58.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp.
Durán D, Imperial J, Palacios J, Ruiz-Argüeso T, Göttfert M, Zehner S, Rey L., FEMS Microbiol Lett 365(5), 2018
PMID: 29281013
InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis With Vigna Species.
Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S., Front Microbiol 9(), 2018
PMID: 30619219
The naringenin-induced exoproteome of Rhizobium etli CE3.
Meneses N, Taboada H, Dunn MF, Vargas MDC, Buchs N, Heller M, Encarnación S., Arch Microbiol 199(5), 2017
PMID: 28255691
Expanding Role of Type II Secretion in Bacterial Pathogenesis and Beyond.
Cianciotto NP, White RC., Infect Immun 85(5), 2017
PMID: 28264910
The Bacteroid Periplasm in Soybean Nodules Is an Interkingdom Symbiotic Space.
Strodtman KN, Stevenson SE, Waters JK, Mawhinney TP, Thelen JJ, Polacco JC, Emerich DW., Mol Plant Microbe Interact 30(12), 2017
PMID: 29028412
Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Vigna radiata.
Nguyen HP, Miwa H, Kaneko T, Sato S, Okazaki S., Genes (Basel) 8(12), 2017
PMID: 29292795
The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate.
Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C., J Exp Bot 67(8), 2016
PMID: 26931172
Quantitative time-course proteome analysis of Mesorhizobium loti during nodule maturation.
Nambu M, Tatsukami Y, Morisaka H, Kuroda K, Ueda M., J Proteomics 125(), 2015
PMID: 25982383
Tricholoma vaccinum host communication during ectomycorrhiza formation.
Wagner K, Linde J, Krause K, Gube M, Koestler T, Sammer D, Kniemeyer O, Kothe E., FEMS Microbiol Ecol 91(11), 2015
PMID: 26449385
Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis.
Gomes DF, da Silva Batista JS, Rolla AA, da Silva LP, Bloch C, Galli-Terasawa LV, Hungria M., BMC Genomics 15(), 2014
PMID: 25086822
Functional characterization of NopT1 and NopT2, two type III effectors of Bradyrhizobium japonicum.
Fotiadis CT, Dimou M, Georgakopoulos DG, Katinakis P, Tampakaki AP., FEMS Microbiol Lett 327(1), 2012
PMID: 22112296
Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234.
Xin DW, Liao S, Xie ZP, Hann DR, Steinle L, Boller T, Staehelin C., PLoS Pathog 8(5), 2012
PMID: 22615567
Soybean seed lectin prevents the accumulation of S-adenosyl methionine synthetase and the S1 30S ribosomal protein in Bradyrhizobium japonicum under C and N starvation.
Pérez-Giménez J, Covelli JM, López MF, Althabegoiti MJ, Ferrer-Navarro M, Mongiardini EJ, Lodeiro AR., Curr Microbiol 65(4), 2012
PMID: 22782468
Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum.
Schirrmeister J, Friedrich L, Wenzel M, Hoppe M, Wolf C, Göttfert M, Zehner S., J Bacteriol 193(15), 2011
PMID: 21642459
An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.
Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G., Proteomics 10(7), 2010
PMID: 20104621

56 References

Daten bereitgestellt von Europe PubMed Central.

Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234.
Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ, Perret X., J. Bacteriol. 186(14), 2004
PMID: 15231809
Non-classical protein secretion in bacteria.
Bendtsen JD, Kiemer L, Fausboll A, Brunak S., BMC Microbiol. 5(), 2005
PMID: 16212653
Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export?
Boel G, Pichereau V, Mijakovic I, Maze A, Poncet S, Gillet S, Giard JC, Hartke A, Auffray Y, Deutscher J., J. Mol. Biol. 337(2), 2004
PMID: 15003462
New NodW- or NifA-regulated Bradyrhizobium japonicum genes.
Caldelari Baumberger I, Fraefel N, Gottfert M, Hennecke H., Mol. Plant Microbe Interact. 16(4), 2003
PMID: 12744463
An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum.
Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G., Mol. Plant Microbe Interact. 20(10), 2007
PMID: 17918631
Coordinating assembly of a bacterial macromolecular machine.
Chevance FF, Hughes KT., Nat. Rev. Microbiol. 6(6), 2008
PMID: 18483484
The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis.
Cosme AM, Becker A, Santos MR, Sharypova LA, Santos PM, Moreira LM., Mol. Plant Microbe Interact. 21(7), 2008
PMID: 18533835
Study of soybean and lentil root exudates
d’Arcy-Lameta, Plant Soil 92(), 1986
NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp. strain NGR234.
Deakin WJ, Marie C, Saad MM, Krishnan HB, Broughton WJ., Mol. Plant Microbe Interact. 18(5), 2005
PMID: 15915648
Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean.
de Lyra Mdo C, Lopez-Baena FJ, Madinabeitia N, Vinardell JM, Espuny Mdel R, Cubo MT, Belloguin RA, Ruiz-Sainz JE, Ollero FJ., Int. Microbiol. 9(2), 2006
PMID: 16835843
Common themes in microbial pathogenicity.
Finlay BB, Falkow S., Microbiol. Rev. 53(2), 1989
PMID: 2569162
Molecular basis of symbiosis between Rhizobium and legumes.
Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X., Nature 387(6631), 1997
PMID: 9163424
A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes.
Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D., Proteomics 5(14), 2005
PMID: 16167365
Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome.
Gottfert M, Rothlisberger S, Kundig C, Beck C, Marty R, Hennecke H., J. Bacteriol. 183(4), 2001
PMID: 11157954
Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system.
Hubber AM, Sullivan JT, Ronson CW., Mol. Plant Microbe Interact. 20(3), 2007
PMID: 17378428
Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum.
Kanbe M, Yagasaki J, Zehner S, Gottfert M, Aizawa S., J. Bacteriol. 189(3), 2006
PMID: 17098908
Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti.
Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S., DNA Res. 7(6), 2000
PMID: 11214968
Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max.
Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER., Proc. Natl. Acad. Sci. U.S.A. 84(21), 1987
PMID: 16593884
Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum.
Krause A, Doerfel A, Gottfert M., Mol. Plant Microbe Interact. 15(12), 2002
PMID: 12481995
The genistein stimulon of Bradyrhizobium japonicum.
Lang K, Lindemann A, Hauser F, Gottfert M., Mol. Genet. Genomics 279(3), 2008
PMID: 18214545
NopB, a soybean cultivar-specificity protein from Sinorhizobium fredii USDA257, is a type III secreted protein.
Lorio JC, Kim WS, Krishnan HB., Mol. Plant Microbe Interact. 17(11), 2004
PMID: 15553251
Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103.
Lopez-Baena FJ, Vinardell JM, Perez-Montano F, Crespo-Rivas JC, Bellogin RA, Espuny Mdel R, Ollero FJ., Microbiology (Reading, Engl.) 154(Pt 6), 2008
PMID: 18524937
Jasmonates induce Nod factor production by Bradyrhizobium japonicum.
Mabood F, Souleimanov A, Khan W, Smith DL., Plant Physiol. Biochem. 44(11-12), 2006
PMID: 17107814
Rhizobium type III secretion systems: legume charmers or alarmers?
Marie C, Broughton WJ, Deakin WJ., Curr. Opin. Plant Biol. 4(4), 2001
PMID: 11418344
TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides.
Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B, Broughton WJ, Perret X., Mol. Plant Microbe Interact. 17(9), 2004
PMID: 15384486
Special delivery: vesicle trafficking in prokaryotes.
Mashburn-Warren LM, Whiteley M., Mol. Microbiol. 61(4), 2006
PMID: 16879642
The various and varying roles of specific chaperones in type III secretion systems.
Parsot C, Hamiaux C, Page AL., Curr. Opin. Microbiol. 6(1), 2003
PMID: 12615213
Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.
Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H., Mol. Plant Microbe Interact. 20(11), 2007
PMID: 17977147
RNA polymerase from Rhizobium japonicum.
Regensburger B, Hennecke H., Arch. Microbiol. 135(2), 1983
PMID: 6639271
NopM and NopD are rhizobial nodulation outer proteins: identification using LC-MALDI and LC-ESI with a monolithic capillary column.
Rodrigues JA, Lopez-Baena FJ, Ollero FJ, Vinardell JM, Espuny Mdel R, Bellogin RA, Ruiz-Sainz JE, Thomas JR, Sumpton D, Ault J, Thomas-Oates J., J. Proteome Res. 6(3), 2007
PMID: 17249710
Identification of extracytoplasmic proteins in Bradyrhizobium japonicum using phage display.
Rosander A, Frykberg L, Ausmees N, Muller P., Mol. Plant Microbe Interact. 16(8), 2003
PMID: 12906117
NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages.
Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW, Broughton WJ, Deakin WJ., J. Bacteriol. 187(3), 2005
PMID: 15659692
Protein-protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234.
Saad MM, Staehelin C, Broughton WJ, Deakin WJ., J. Bacteriol. 190(2), 2007
PMID: 17981961
Genetic Diversity in Bradyrhizobium japonicum Serogroup 123 and Its Relation to Genotype-Specific Nodulation of Soybean.
Sadowsky MJ, Tully RE, Cregan PB, Keyser HH., Appl. Environ. Microbiol. 53(11), 1987
PMID: 16347481

Sambrook, 2001
In-gel digestion for mass spectrometric characterization of proteins and proteomes.
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M., Nat Protoc 1(6), 2006
PMID: 17406544
Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum.
Suss C, Hempel J, Zehner S, Krause A, Patschkowski T, Gottfert M., J. Biotechnol. 126(1), 2006
PMID: 16707185
Symbiotic implications of type III protein secretion machinery in Rhizobium.
Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X., Mol. Microbiol. 28(6), 1998
PMID: 9680225
Sequence similarity-driven proteomics in organisms with unknown genomes by LC-MS/MS and automated de novo sequencing.
Waridel P, Frank A, Thomas H, Surendranath V, Sunyaev S, Pevzner P, Shevchenko A., Proteomics 7(14), 2007
PMID: 17623296
TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes.
Wassem R, Kobayashi H, Kambara K, Le Quere A, Walker GC, Broughton WJ, Deakin WJ., Mol. Microbiol. 68(3), 2008
PMID: 18363648
Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100.
Watt SA, Wilke A, Patschkowski T, Niehaus K., Proteomics 5(1), 2005
PMID: 15619296
Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter.
Zehner S, Schober G, Wenzel M, Lang K, Gottfert M., Mol. Plant Microbe Interact. 21(8), 2008
PMID: 18616405

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 19095018
PubMed | Europe PMC

Suchen in

Google Scholar