Controlling a system with redundant degrees of freedom: transition from standing to walking

Jeremy L (2009)
J. Comp. Physiol A 195(5): 429-443.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
In earlier investigations L,vy and Cruse (J Comp Physiol 194:719-733, 2008; J Comp Physiol 194:735-750, 2008) asked the question that how the nervous system of a stick insect, Carausius morosus, chooses a solution from an abundance of possibilities to solve the task of distributing its body weight onto its six legs, i.e., the torques that are produced by the 18 joints (three per leg). This paper concentrates on the transition from standing to walking using semi-parametrical regression models. Results presented are basically descriptive and do not deal yet with underlying mechanisms. Based on torque changes, the first swing movement is initiated at about 0.3 s before the first leg takes off. The way torques change depends on the joint type, on whether the leg is going to swing and on the number of legs swinging, but not on the leg type, not on the torques size and not on the stepping configuration. Furthermore, the more legs are lifted off to begin a swing movement the higher are the torques produced. The results might be interpreted such that legs starting a swing movement develop, before lift off, levating torques to overcome the adhesive forces produced by the tarsi, whereas the other legs develop depressing torques to maintain the posture.
Erscheinungsjahr
Zeitschriftentitel
J. Comp. Physiol A
Band
195
Ausgabe
5
Seite(n)
429-443
ISSN
eISSN
PUB-ID

Zitieren

Jeremy L. Controlling a system with redundant degrees of freedom: transition from standing to walking. J. Comp. Physiol A. 2009;195(5):429-443.
Jeremy, L. (2009). Controlling a system with redundant degrees of freedom: transition from standing to walking. J. Comp. Physiol A, 195(5), 429-443. doi:10.1007/s00359-009-0421-z
Jeremy, L. (2009). Controlling a system with redundant degrees of freedom: transition from standing to walking. J. Comp. Physiol A 195, 429-443.
Jeremy, L., 2009. Controlling a system with redundant degrees of freedom: transition from standing to walking. J. Comp. Physiol A, 195(5), p 429-443.
L. Jeremy, “Controlling a system with redundant degrees of freedom: transition from standing to walking”, J. Comp. Physiol A, vol. 195, 2009, pp. 429-443.
Jeremy, L.: Controlling a system with redundant degrees of freedom: transition from standing to walking. J. Comp. Physiol A. 195, 429-443 (2009).
Jeremy, Levy. “Controlling a system with redundant degrees of freedom: transition from standing to walking”. J. Comp. Physiol A 195.5 (2009): 429-443.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506

41 References

Daten bereitgestellt von Europe PubMed Central.


C, J Exp Biol 203(7), 2000

U, J Comp Physiol 121(1), 1977

N, 1967

A, J Comput Graphical Statist 13(1), 2004

A, Comput Statist Data Anal 50(), 2006

A, J Stat Soft 14(1), 2005

H, J Comp Physiol 112(2), 1976

H, J Exp Biol 92(1), 1981

AUTHOR UNKNOWN, 0

H, J Exp Biol 116(1), 1985
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670

H, J Insect Physiol 41(9), 1995

H, J Exp Biol 101(1), 1982

H, J Exp Biol 92(1), 1981

H, Biol Cybern 36(3), 1980

H, J Exp Biol 102(1), 1983

H, J Exp Biol 138(1), 1988

J, J Exp Biol 103(1), 1983
Defense by foot adhesion in a beetle (Hemisphaerota cyanea).
Eisner T, Aneshansley DJ., Proc. Natl. Acad. Sci. U.S.A. 97(12), 2000
PMID: 10841556

L, Stat Sinica 14(), 2004
An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants.
Federle W, Riehle M, Curtis AS, Full RJ., Integr. Comp. Biol. 42(6), 2002
PMID: 21680393
Mechanics of six-legged runners.
Full RJ, Tu MS., J. Exp. Biol. 148(), 1990
PMID: 2307925

R, J Exp Biol 156(), 1991
Maximum single leg force production: cockroaches righting on photoelastic gelatin
Full R, Yamauchi A, Jindrich D., J. Exp. Biol. 198(Pt 12), 1995
PMID: 9320366
Dynamics of rapid vertical climbing in cockroaches reveals a template.
Goldman DI, Chen TS, Dudek DM, Full RJ., J. Exp. Biol. 209(Pt 15), 2006
PMID: 16857883

S, 2001
Coordinating movement at two joints: a principle of linear covariance.
Gottlieb GL, Song Q, Hong DA, Almeida GL, Corcos D., J. Neurophysiol. 75(4), 1996
PMID: 8727412

D, J Comp Physiol 81(1), 1972

D, Biol Cybern 26(4), 1977
Many-legged maneuverability: dynamics of turning in hexapods
Jindrich DL, Full RJ., J. Exp. Biol. 202 (Pt 12)(), 1999
PMID: 10333507
Dynamic stabilization of rapid hexapedal locomotion.
Jindrich DL, Full RJ., J. Exp. Biol. 205(Pt 18), 2002
PMID: 12177146

F, Acta Psychol 54(1–3), 1983

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Three dimensional arm trajectories.
Morasso P., Biol Cybern 48(3), 1983
PMID: 6639982
Tarsal movements in flies during leg attachment and detachment on a smooth substrate.
Niederegger S, Gorb S., J. Insect Physiol. 49(6), 2003
PMID: 12804721

C, 2007

AUTHOR UNKNOWN, 0
Optimal feedback control as a theory of motor coordination.
Todorov E, Jordan MI., Nat. Neurosci. 5(11), 2002
PMID: 12404008

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19229542
PubMed | Europe PMC

Suchen in

Google Scholar