Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots

Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Mueller J, Hause B, Yan X, Küster H, Franken P (2009)
PLANTA 229(5): 1023-1034.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Grunwald, Ulf; Guo, Wenbing; Fischer, Kerstin; Isayenkov, Stanislav; Ludwig-Mueller, Jutta; Hause, Bettina; Yan, Xiaolong; Küster, Helge; Franken, Philipp
Abstract / Bemerkung
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices.
Stichworte
Gigaspora rosea; Arbuscular mycorrhiza; Abscisic acid; Glomus mosseae; Phosphate transporter genes; Jasmonic acid; Glomus; intraradices
Erscheinungsjahr
2009
Zeitschriftentitel
PLANTA
Band
229
Ausgabe
5
Seite(n)
1023-1034
ISSN
0032-0935
eISSN
1432-2048
Page URI
https://pub.uni-bielefeld.de/record/1633944

Zitieren

Grunwald U, Guo W, Fischer K, et al. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots. PLANTA. 2009;229(5):1023-1034.
Grunwald, U., Guo, W., Fischer, K., Isayenkov, S., Ludwig-Mueller, J., Hause, B., Yan, X., et al. (2009). Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots. PLANTA, 229(5), 1023-1034. https://doi.org/10.1007/s00425-008-0877-z
Grunwald, Ulf, Guo, Wenbing, Fischer, Kerstin, Isayenkov, Stanislav, Ludwig-Mueller, Jutta, Hause, Bettina, Yan, Xiaolong, Küster, Helge, and Franken, Philipp. 2009. “Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots”. PLANTA 229 (5): 1023-1034.
Grunwald, U., Guo, W., Fischer, K., Isayenkov, S., Ludwig-Mueller, J., Hause, B., Yan, X., Küster, H., and Franken, P. (2009). Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots. PLANTA 229, 1023-1034.
Grunwald, U., et al., 2009. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots. PLANTA, 229(5), p 1023-1034.
U. Grunwald, et al., “Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots”, PLANTA, vol. 229, 2009, pp. 1023-1034.
Grunwald, U., Guo, W., Fischer, K., Isayenkov, S., Ludwig-Mueller, J., Hause, B., Yan, X., Küster, H., Franken, P.: Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots. PLANTA. 229, 1023-1034 (2009).
Grunwald, Ulf, Guo, Wenbing, Fischer, Kerstin, Isayenkov, Stanislav, Ludwig-Mueller, Jutta, Hause, Bettina, Yan, Xiaolong, Küster, Helge, and Franken, Philipp. “Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P-i-fertilised and phytohormone-treated Medicago truncatula roots”. PLANTA 229.5 (2009): 1023-1034.

39 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Molecular Background of Pi Deficiency-Induced Root Hair Growth in Brassica carinata - A Fasciclin-Like Arabinogalactan Protein Is Involved.
Kirchner TW, Niehaus M, Rössig KL, Lauterbach T, Herde M, Küster H, Schenk MK., Front Plant Sci 9(), 2018
PMID: 30283481
Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal Medicago truncatula.
Adolfsson L, Nziengui H, Abreu IN, Šimura J, Beebo A, Herdean A, Aboalizadeh J, Široká J, Moritz T, Novák O, Ljung K, Schoefs B, Spetea C., Plant Physiol 175(1), 2017
PMID: 28698354
Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.
Cosme M, Ramireddy E, Franken P, Schmülling T, Wurst S., Mycorrhiza 26(7), 2016
PMID: 27193443
Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas.
Jakobsen I, Smith SE, Smith FA, Watts-Williams SJ, Clausen SS, Grønlund M., J Exp Bot 67(21), 2016
PMID: 27811084
The Medicago truncatula hypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible to Aphanomyces euteiches.
Truong HN, Thalineau E, Bonneau L, Fournier C, Potin S, Balzergue S, VAN Tuinen D, Jeandroz S, Morandi D., Plant Cell Environ 38(1), 2015
PMID: 24815324
Suppression of Arbuscule Degeneration in Medicago truncatula phosphate transporter4 Mutants is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3.
Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB, Benedito VA, Udvardi MK, Harrison MJ., Plant Cell 27(4), 2015
PMID: 25841038
Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C., New Phytol 208(1), 2015
PMID: 25919491
Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots
Martín‐Rodríguez JÁ, Ocampo JA, Molinero‐Rosales N, Tarkowská D, Ruíz‐Rivero O, García‐Garrido JM., Physiol Plant 154(1), 2015
PMID: IND601259800
Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.
Watts-Williams SJ, Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M., J Exp Bot 66(13), 2015
PMID: 25944927
Plant hormones as signals in arbuscular mycorrhizal symbiosis.
Miransari M, Abrishamchi A, Khoshbakht K, Niknam V., Crit Rev Biotechnol 34(2), 2014
PMID: 23113535
Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals.
Sbrana C, Avio L, Giovannetti M., Electrophoresis 35(11), 2014
PMID: 25025092
The role of the cell wall compartment in mutualistic symbioses of plants.
Rich MK, Schorderet M, Reinhardt D., Front Plant Sci 5(), 2014
PMID: 24917869
The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene-silencing approach.
Grønlund M, Albrechtsen M, Johansen IE, Hammer EC, Nielsen TH, Jakobsen I., Physiol Plant 149(2), 2013
PMID: 23387980
Biotrophic transportome in mutualistic plant-fungal interactions.
Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D., Mycorrhiza 23(8), 2013
PMID: 23572325
The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene‐silencing approach
Grønlund M, Albrechtsen M, Johansen IE, Hammer EC, Nielsen TH, Jakobsen I., Physiol Plant 149(2), 2013
PMID: IND500692030
The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont.
Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JP, Gianinazzi-Pearson V, Martin F., New Phytol 193(3), 2012
PMID: 22092242
Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis.
Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey DJ, Park K, Howes-Podoll M, den Os D, Yeun LH, Westphall MS, Sussman MR, Ané JM, Coon JJ., Mol Cell Proteomics 11(9), 2012
PMID: 22683509
The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.
Fellbaum CR, Mensah JA, Pfeffer PE, Kiers ET, Bücking H., Plant Signal Behav 7(11), 2012
PMID: 22990447
RNA quality assessment: a view from plant qPCR studies.
Die JV, Román B., J Exp Bot 63(17), 2012
PMID: 23045609
Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean.
Qin L, Guo Y, Chen L, Liang R, Gu M, Xu G, Zhao J, Walk T, Liao H., PLoS One 7(10), 2012
PMID: 23133521
Interactions between arbuscular mycorrhizal fungi and soil bacteria.
Miransari M., Appl Microbiol Biotechnol 89(4), 2011
PMID: 21104242
Transcription reprogramming during root nodule development in Medicago truncatula.
Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P., PLoS One 6(1), 2011
PMID: 21304580
Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway.
López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ., J Exp Bot 61(10), 2010
PMID: 20378666
Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning.
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D., Plant J 64(6), 2010
PMID: 21143680
Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.
Luo ZB, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A., Plant Physiol 151(4), 2009
PMID: 19812185

61 References

Daten bereitgestellt von Europe PubMed Central.

Fungal and plant gene expression in arbuscular mycorrhizal symbiosis.
Balestrini R, Lanfranco L., Mycorrhiza 16(8), 2006
PMID: 17004063
Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR).
Bauer D, Muller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M., Nucleic Acids Res. 21(18), 1993
PMID: 8414982
Do arbuscular mycorrhizal fungi alter plant–pathogen relations?
Borowicz VA., 2001
Transcriptional response of sugarcane roots to methyl jasmonate.
Bower NI, Casu RE, Maclean DJ, Reverter A, Chapman SC, Manners JM., Plant Sci. 168(3), 2005
PMID: IND43676871
Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species
Cavagnaro TR, Smith FA, Smith SE, Jakobsen I., 2005
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Abscisic acid biosynthesis and response
Finkelstein RR, Rock CD., 2002
The transcriptional control of plant responses to phosphate limitation.
Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J., J. Exp. Bot. 55(396), 2004
PMID: 14718495
Diversity of arbuscular mycorrhizal fungi
Franken P, George E., 2006
Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi.
Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S., New Phytol. 133(1), 1996
PMID: IND20632246
Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile.
Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P., Plant Mol. Biol. 55(4), 2004
PMID: 15604700
Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization.
Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U., Proc. Natl. Acad. Sci. U.S.A. 102(22), 2005
PMID: 15905328
Jasmonates in arbuscular mycorrhizal interactions.
Hause B, Mrosk C, Isayenkov S, Strack D., Phytochemistry 68(1), 2006
PMID: 17097695
Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza.
Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, Garcia Garrido JM., New Phytol. 175(3), 2007
PMID: 17635230

Hewitt EJ., 1966
A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis.
Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ., Proc. Natl. Acad. Sci. U.S.A. 104(5), 2007
PMID: 17242358
MtHA1, a plasma membrane H-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression
Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P., 2002
Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula.
Kuster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Puhler A, Gamas P, Becker A., J. Biotechnol. 108(2), 2004
PMID: 15129719
Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent.
Lerat S, Lapointe L, Gutjahr S, Piche Y, Vierheilig H., New Phytol. 157(3), 2003
PMID: IND23321929
Hormonal balance in plants during colonization by mycorrhizal fungi
Ludwig-Muller J., 2000
Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis.
Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S., Plant Cell Physiol. 47(7), 2006
PMID: 16774930
Influence of phylogeny on fungal community assembly and ecosystem functioning.
Maherali H, Klironomos JN., Science 316(5832), 2007
PMID: 17588930
Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses.
Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H., Mol. Plant Microbe Interact. 17(10), 2004
PMID: 15497399
Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota.
Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez L, Selim S, Gianinazzi S, Gianinazzi-Pearson V., Mycorrhiza 17(3), 2007
PMID: 17245570
A modified single solution method for the determination of phosphate in natural waters
Murphy J, Riley JP., 1962
The distribution of mycorrhizas among families of vascular plants
Newman EI, Reddell P., 1987
Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses.
Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K., Plant Physiol. 133(4), 2003
PMID: 14645724
A phosphate transporter expressed in arbuscule-containing cells in potato.
Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M., Nature 414(6862), 2001
PMID: 11719809

AUTHOR UNKNOWN, 0
Nitric oxide involved in the abscisic acid induced proline accumulation in wheat seedling leaves under salt stress
Ruan HH, Shen WB, Xu LL., 2004
A new fungal phylum, the Glomeromycota: phylogeny and evolution.
Schussler A, Schwarzott D, Walker C., Mycol. Res. 105(12), 2001
PMID: IND23264612

Smith SE, Read DJ., 1997
Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses.
Smith SE, Smith FA, Jakobsen I., Plant Physiol. 133(1), 2003
PMID: 12970469
Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies
Strimmer K, Haeseler A., 1996
Mesure du taux de mycorhization VA d’un système radiculaire. Recherche des méthodes d’estimation ayant une signification fonctionnelle
Trouvelot A, Kough JL, Gianinazzi-Pearson V., 1986
Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved.
van Rhijn P, Fang Y, Galili S, Shaul O, Atzmon N, Wininger S, Eshed Y, Lum M, Li Y, To V, Fujishige N, Kapulnik Y, Hirsch AM., Proc. Natl. Acad. Sci. U.S.A. 94(10), 1997
PMID: 11038545
Jasmonates and octadecanoids: signals in plant stress responses and development.
Wasternack C, Hause B., Prog. Nucleic Acid Res. Mol. Biol. 72(), 2002
PMID: 12206452
Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula.
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F., Mol. Plant Microbe Interact. 16(4), 2003
PMID: 12744459
Isolation and characterization of root-specific phosphate transporter promoters from Medicago trunatula.
Xiao K, Liu J, Dewbre G, Harrison M, Wang ZY., Plant Biol (Stuttg) 8(4), 2006
PMID: 16917979
Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.
Yamaguchi-Shinozaki K, Shinozaki K., Annu Rev Plant Biol 57(), 2006
PMID: 16669782
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19169704
PubMed | Europe PMC

Suchen in

Google Scholar