Dry and wet interfaces: Influence of solvent particles on molecular recognition

Taktikos J, Behringer H (2009)
Physical Review E 79(4): 041908.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Taktikos, JohannesUniBi; Behringer, Hans
Abstract / Bemerkung
We present a coarse-grained lattice model to study the influence of water on the recognition process of two rigid proteins. The basic model is formulated in terms of the hydrophobic effect. We then investigate several modifications of our basic model showing that the selectivity of the recognition process can be enhanced by considering the explicit influence of single solvent particles. When the number of cavities at the interface of a protein-protein complex is fixed as an intrinsic geometric constraint, there typically exists a characteristic fraction that should be filled with water molecules such that the selectivity exhibits a maximum. In addition, the optimum fraction depends on the hydrophobicity of the interface so that one has to distinguish between dry and wet interfaces.
Stichworte
water; proteins; molecular configurations; biophysics; hydrophobicity; interface phenomena; biomembranes; molecular
Erscheinungsjahr
2009
Zeitschriftentitel
Physical Review E
Band
79
Ausgabe
4
Art.-Nr.
041908
ISSN
1539-3755
eISSN
1550-2376
Page URI
https://pub.uni-bielefeld.de/record/1633864

Zitieren

Taktikos J, Behringer H. Dry and wet interfaces: Influence of solvent particles on molecular recognition. Physical Review E. 2009;79(4): 041908.
Taktikos, J., & Behringer, H. (2009). Dry and wet interfaces: Influence of solvent particles on molecular recognition. Physical Review E, 79(4), 041908. https://doi.org/10.1103/PhysRevE.79.041908
Taktikos, Johannes, and Behringer, Hans. 2009. “Dry and wet interfaces: Influence of solvent particles on molecular recognition”. Physical Review E 79 (4): 041908.
Taktikos, J., and Behringer, H. (2009). Dry and wet interfaces: Influence of solvent particles on molecular recognition. Physical Review E 79:041908.
Taktikos, J., & Behringer, H., 2009. Dry and wet interfaces: Influence of solvent particles on molecular recognition. Physical Review E, 79(4): 041908.
J. Taktikos and H. Behringer, “Dry and wet interfaces: Influence of solvent particles on molecular recognition”, Physical Review E, vol. 79, 2009, : 041908.
Taktikos, J., Behringer, H.: Dry and wet interfaces: Influence of solvent particles on molecular recognition. Physical Review E. 79, : 041908 (2009).
Taktikos, Johannes, and Behringer, Hans. “Dry and wet interfaces: Influence of solvent particles on molecular recognition”. Physical Review E 79.4 (2009): 041908.

44 References

Daten bereitgestellt von Europe PubMed Central.

Principles of protein folding--a perspective from simple exact models.
Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD, Chan HS., Protein Sci. 4(4), 1995
PMID: 7613459

AUTHOR UNKNOWN, 1994

AUTHOR UNKNOWN, 2000

AUTHOR UNKNOWN, 1997

AUTHOR UNKNOWN, 2006
The kinetics of protein-protein recognition.
Janin J., Proteins 28(2), 1997
PMID: 9188733
Disordered heteropolymers: models for biomimetic polymers and polymers with frustrating quenched disorder
Chakraborty, Physics Reports 342(1), 2001
A computational approach to simplifying the protein folding alphabet.
Wang J, Wang W., Nat. Struct. Biol. 6(11), 1999
PMID: 10542095
Amino acid classes and the protein folding problem
Cieplak, The Journal of Chemical Physics 114(3), 2001
Principles of protein-protein interactions.
Jones S, Thornton JM., Proc. Natl. Acad. Sci. U.S.A. 93(1), 1996
PMID: 8552589
Simulation of biomimetic recognition between polymers and surfaces.
Golumbfskie AJ, Pande VS, Chakraborty AK., Proc. Natl. Acad. Sci. U.S.A. 96(21), 1999
PMID: 10518514
Nature of Driving Force for Protein Folding: A Result From Analyzing the Statistical Potential
Li, Physical Review Letters 79(4), 1997
Test of a statistical model for molecular recognition in biological repertoires.
Rosenwald S, Kafri R, Lancet D., J. Theor. Biol. 216(3), 2002
PMID: 12183121
Theoretical studies of protein folding.
Go N., Annu. Rev. Biophys. Bioeng. 12(), 1983
PMID: 6347038
Role of water mediated interactions in protein-protein recognition landscapes.
Papoian GA, Ulander J, Wolynes PG., J. Am. Chem. Soc. 125(30), 2003
PMID: 15369374
Structural basis of macromolecular recognition.
Wodak SJ, Janin J., Adv. Protein Chem. 61(), 2002
PMID: 12461820
Morphology of protein-protein interfaces.
Larsen TA, Olson AJ, Goodsell DS., Structure 6(4), 1998
PMID: 9562553
Polymer adsorption onto random planar surfaces: interplay of polymer and surface correlations.
Polotsky A, Schmid F, Degenhard A., J Chem Phys 121(10), 2004
PMID: 15332921
Molecular recognition in a lattice model: an enumeration study.
Bogner T, Degenhard A, Schmid F., Phys. Rev. Lett. 93(26 Pt 1), 2004
PMID: 15698030
Theory for the folding and stability of globular proteins.
Dill KA., Biochemistry 24(6), 1985
PMID: 3986190
Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation
Miyazawa, Macromolecules 18(3), 1985
A lattice statistical mechanics model of the conformational and sequence spaces of proteins
Lau, Macromolecules 22(10), 1989
Hydration of protein-protein interfaces.
Rodier F, Bahadur RP, Chakrabarti P, Janin J., Proteins 60(1), 2005
PMID: 15856483
Substrate specificity of peptide adsorption: a model study.
Bachmann M, Janke W., Phys Rev E Stat Nonlin Soft Matter Phys 73(2 Pt 1), 2006
PMID: 16605320
Water mediation in protein folding and molecular recognition.
Levy Y, Onuchic JN., Annu Rev Biophys Biomol Struct 35(), 2006
PMID: 16689642
Application of a Theory of Enzyme Specificity to Protein Synthesis.
Koshland DE., Proc. Natl. Acad. Sci. U.S.A. 44(2), 1958
PMID: 16590179
Probability model for molecular recognition in biological receptor repertoires: significance to the olfactory system.
Lancet D, Sadovsky E, Seidemann E., Proc. Natl. Acad. Sci. U.S.A. 90(8), 1993
PMID: 8475121
Coarse-grained lattice model for molecular recognition.
Behringer H, Degenhard A, Schmid F., Phys. Rev. Lett. 97(12), 2006
PMID: 17026000
THE NATURE OF THE INTERMOLECULAR FORCES OPERATIVE IN BIOLOGICAL PROCESSES.
Pauling L, Delbruck M., Science 92(2378), 1940
PMID: 17733330
Water at biomolecular binding interfaces.
Li Z, Lazaridis T., Phys Chem Chem Phys 9(5), 2006
PMID: 17242738
Macromolecular recognition in the Protein Data Bank.
Janin J, Rodier F, Chakrabarti P, Bahadur RP., Acta Crystallogr. D Biol. Crystallogr. 63(Pt 1), 2006
PMID: 17164520
Developing and analyzing idealized models for molecular recognition.
Behringer H, Bogner T, Polotsky A, Degenhard A, Schmid F., J. Biotechnol. 129(2), 2007
PMID: 17368607
Einfluss der Configuration auf die Wirkung der Enzyme
Fischer, Berichte der deutschen chemischen Gesellschaft 27(3), 1894
Coarse-grained lattice model for investigating the role of cooperativity in molecular recognition.
Behringer H, Degenhard A, Schmid F., Phys Rev E Stat Nonlin Soft Matter Phys 76(3 Pt 1), 2007
PMID: 17930278
Statistically enhanced promiscuity of structurally correlated patterns.
Lukatsky DB, Shakhnovich EI., Phys Rev E Stat Nonlin Soft Matter Phys 77(2 Pt 1), 2008
PMID: 18351980
Influence of correlations on molecular recognition.
Behringer H, Schmid F., Phys Rev E Stat Nonlin Soft Matter Phys 78(3 Pt 1), 2008
PMID: 18851061
Cavities and atomic packing in protein structures and interfaces.
Sonavane S, Chakrabarti P., PLoS Comput. Biol. 4(9), 2008
PMID: 19005575
Cavities and packing at protein interfaces.
Hubbard SJ, Argos P., Protein Sci. 3(12), 1994
PMID: 7756979
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19518257
PubMed | Europe PMC

arXiv: 0904.2317

Suchen in

Google Scholar