Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A(1)A(O) ATP synthase

Kumar A, Manimekalai MSS, Balakrishna AM, Hunke C, Weigelt S, Sewald N, Grueber G (2009)
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 75(4): 807-819.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
A strategically placed tryptophan in position of Arg416 was used as an optical probe to monitor adenosine triphosphate and adenosine-diphosphate binding to subunit B of the A(1)A(O) adenosine triphosphate (ATP) synthase from Methanosarcina mazei Go1. Tryptophan fluorescence and fluorescence correlation spectroscopy gave binding constants indicating a preferred binding of ATP over ADP to the protein. The X-ray crystal structure of the R416W mutant protein in the presence of ATP was solved to 2.1 angstrom resolution, showing the substituted Trp-residue inside the predicted adenine-binding pocket. The cocrystallized ATP molecule could be trapped in a so-called transition nucleotide-binding state. The high resolution structure shows the phosphate residues of the ATP near the P-loop region (S150-E158) and its adenine ring forms pi-pi interaction with Phe149. This transition binding position of ATP could be confirmed by tryptophan emission spectra using the subunit B mutant F149W. The trapped ATP position, similar to the one of the binding region of the antibiotic efrapeptin in F1FO ATP synthases, is discussed in light of a transition nucleotide-binding state of ATP while on its way to the final binding pocket. Finally, the inhibitory effect of efrapeptin C in ATPase activity of a reconstituted A(3)B(3)- and A(3)B(R416W)(3)-subcomplex, composed of subunit A and the B subunit mutant R416W, of the A(1)A(O) ATP synthase is shown.
Erscheinungsjahr
Zeitschriftentitel
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Band
75
Ausgabe
4
Seite(n)
807-819
ISSN
eISSN
PUB-ID

Zitieren

Kumar A, Manimekalai MSS, Balakrishna AM, et al. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A(1)A(O) ATP synthase. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS. 2009;75(4):807-819.
Kumar, A., Manimekalai, M. S. S., Balakrishna, A. M., Hunke, C., Weigelt, S., Sewald, N., & Grueber, G. (2009). Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A(1)A(O) ATP synthase. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 75(4), 807-819. doi:10.1002/prot.22289
Kumar, A., Manimekalai, M. S. S., Balakrishna, A. M., Hunke, C., Weigelt, S., Sewald, N., and Grueber, G. (2009). Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A(1)A(O) ATP synthase. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 75, 807-819.
Kumar, A., et al., 2009. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A(1)A(O) ATP synthase. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 75(4), p 807-819.
A. Kumar, et al., “Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A(1)A(O) ATP synthase”, PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, vol. 75, 2009, pp. 807-819.
Kumar, A., Manimekalai, M.S.S., Balakrishna, A.M., Hunke, C., Weigelt, S., Sewald, N., Grueber, G.: Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A(1)A(O) ATP synthase. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS. 75, 807-819 (2009).
Kumar, Anil, Manimekalai, Malathy Sony Subramanian, Balakrishna, Asha Manikkoth, Hunke, Cornelia, Weigelt, Sven, Sewald, Norbert, and Grueber, Gerhard. “Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A(1)A(O) ATP synthase”. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 75.4 (2009): 807-819.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans.
Mohanty S, Jobichen C, Chichili VP, Velázquez-Campoy A, Low BC, Hogue CW, Sivaraman J., J Biol Chem 290(45), 2015
PMID: 26370083
ATP synthases from archaea: the beauty of a molecular motor.
Grüber G, Manimekalai MS, Mayer F, Müller V., Biochim Biophys Acta 1837(6), 2014
PMID: 24650628
Conformational properties of secondary amino acids: replacement of pipecolic acid by N-methyl-l-alanine in efrapeptin C.
Dutt Konar A, Vass E, Hollósi M, Majer Z, Grüber G, Frese K, Sewald N., Chem Biodivers 10(5), 2013
PMID: 23681735
Synthesis and conformational analysis of efrapeptins.
Weigelt S, Huber T, Hofmann F, Jost M, Ritzefeld M, Luy B, Freudenberger C, Majer Z, Vass E, Greie JC, Panella L, Kaptein B, Broxterman QB, Kessler H, Altendorf K, Hollósi M, Sewald N., Chemistry 18(2), 2012
PMID: 22147615
Subunit F modulates ATP binding and migration in the nucleotide-binding subunit B of the A(1)A(O) ATP synthase of Methanosarcina mazei Gö1.
Raghunathan D, Gayen S, Kumar A, Hunke C, Grüber G, Verma CS., J Bioenerg Biomembr 44(1), 2012
PMID: 22350011
The transition-like state and Pi entrance into the catalytic a subunit of the biological engine A-ATP synthase.
Manimekalai MS, Kumar A, Jeyakanthan J, Grüber G., J Mol Biol 408(4), 2011
PMID: 21396943
Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution.
Kumar A, Manimekalai MS, Balakrishna AM, Jeyakanthan J, Grüber G., J Mol Biol 396(2), 2010
PMID: 19944110
The effect of NBD-Cl in nucleotide-binding of the major subunit alpha and B of the motor proteins F1FO ATP synthase and A1AO ATP synthase.
Hunke C, Tadwal VS, Manimekalai MS, Roessle M, Grüber G., J Bioenerg Biomembr 42(1), 2010
PMID: 20082212
Crystal and solution structure of the C-terminal part of the Methanocaldococcus jannaschii A1AO ATP synthase subunit E revealed by X-ray diffraction and small-angle X-ray scattering.
Balakrishna AM, Manimekalai MS, Hunke C, Gayen S, Rössle M, Jeyakanthan J, Grüber G., J Bioenerg Biomembr 42(4), 2010
PMID: 20571891
The critical roles of residues P235 and F236 of subunit A of the motor protein A-ATP synthase in P-loop formation and nucleotide binding.
Kumar A, Manimekalai MS, Balakrishna AM, Priya R, Biuković G, Jeyakanthan J, Grüber G., J Mol Biol 401(5), 2010
PMID: 20615420

48 References

Daten bereitgestellt von Europe PubMed Central.

Bioenergetics of the Archaea.
Schafer G, Engelhard M, Muller V., Microbiol. Mol. Biol. Rev. 63(3), 1999
PMID: 10477309
Three-dimensional organization of the archaeal A1-ATPase from Methanosarcina mazei Go1.
Coskun U, Radermacher M, Muller V, Ruiz T, Gruber G., J. Biol. Chem. 279(21), 2004
PMID: 14988401
Structure and subunit arrangement of the A-type ATP synthase complex from the archaeon Methanococcus jannaschii visualized by electron microscopy.
Coskun U, Chaban YL, Lingl A, Muller V, Keegstra W, Boekema EJ, Gruber G., J. Biol. Chem. 279(37), 2004
PMID: 15220347
Cross-talk in the A1-ATPase from Methanosarcina mazei Go1 due to nucleotide binding.
Coskun U, Gruber G, Koch MH, Godovac-Zimmermann J, Lemker T, Muller V., J. Biol. Chem. 277(19), 2002
PMID: 11854274
F-type or V-type? The chimeric nature of the archaebacterial ATP synthase.
Schafer G, Meyering-Vos M., Biochim. Biophys. Acta 1101(2), 1992
PMID: 1385979
The P-loop--a common motif in ATP- and GTP-binding proteins.
Saraste M, Sibbald PR, Wittinghofer A., Trends Biochem. Sci. 15(11), 1990
PMID: 2126155
Nucleotide-binding sites in V-type Na+-ATPase from Enterococcus hirae.
Murata T, Yoshikawa Y, Hosaka T, Takase K, Kakinuma Y, Yamato I, Kikuchi T., J. Biochem. 132(5), 2002
PMID: 12417030
Identification of nucleotide binding sites in V-type Na+-ATPase from Enterococcus hirae.
Hosaka T, Murata T, Kakinuma Y, Yamato I., Biosci. Biotechnol. Biochem. 68(2), 2004
PMID: 14981290
Site-directed mutagenesis by overlap extension using the polymerase chain reaction.
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744487
Synthesis, and structural and biological studies of efrapeptin C analogues.
Jost M, Weigelt S, Huber T, Majer Z, Greie JC, Altendorf K, Sewald N., Chem. Biodivers. 4(6), 2007
PMID: 17589859
Processing of X-ray diffraction data collected in oscillation mode.
Otwinowski Z, Minor W., Meth. Enzymol. 276(), 1997
PMID: 27754618
MOLREP: and automated program for molecular replacement
Vagin, J Appl Crystallogr 30(), 1997
Crystallography and NMR system (CNS): a new software system for macromolecular structure determination
Brunger, Acta Crystallogr D54(), 1998
Coot: model-building tools for molecular graphics
Emsley, Acta Crystallogr D60(), 2004
Refinement of macromolecular structures by the maximum-likelihood method
Murshudov, Acta Crystallogr D53(), 1997
PROCHECK: a program to check the stereochemical quality of protein structures.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM., J Appl Crystallogr 26(2), 1993
PMID: c6802

DeLano, 2002
8-Azido-adenosine 5′-triphosphate as a photoaffinity label for bacterial F1 ATPase
Scheurich, Eur J Biochem 88(), 1979
Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.
Abrahams JP, Leslie AG, Lutter R, Walker JE., Nature 370(6491), 1994
PMID: 8065448
Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk
Maegawa, Acta Crystallogr D62(), 2006
Structural asymmetry of F1-ATPase caused by the gamma subunit generates a high affinity nucleotide binding site.
Kaibara C, Matsui T, Hisabori T, Yoshida M., J. Biol. Chem. 271(5), 1996
PMID: 8576203
Structural characterization of an ATPase active F1-/V1-ATPase (α3β3EG) hybrid complex
Chaban, J Biol Chem 46(), 2004
Catalytic mechanism of F1-ATPase.
Weber J, Senior AE., Biochim. Biophys. Acta 1319(1), 1997
PMID: 9107315
Cysteine scanning mutagenesis of the noncatalytic nucleotide binding site of the yeast V-ATPase.
Vasilyeva E, Liu Q, MacLeod KJ, Baleja JD, Forgac M., J. Biol. Chem. 275(1), 2000
PMID: 10617613
F1-ATPase, roles of three catalytic site residues.
Lobau S, Weber J, Wilke-Mounts S, Senior AE., J. Biol. Chem. 272(6), 1997
PMID: 9013618
Inhibitors of the catalytic domain of mitochondrial ATP synthase.
Gledhill JR, Walker JE., Biochem. Soc. Trans. 34(Pt 5), 2006
PMID: 17052243
The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin.
Abrahams JP, Buchanan SK, Van Raaij MJ, Fearnley IM, Leslie AG, Walker JE., Proc. Natl. Acad. Sci. U.S.A. 93(18), 1996
PMID: 8790345
The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer.
Shirakihara Y, Leslie AG, Abrahams JP, Walker JE, Ueda T, Sekimoto Y, Kambara M, Saika K, Kagawa Y, Yoshida M., Structure 5(6), 1997
PMID: 9261073
The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase.
Stocker A, Keis S, Vonck J, Cook GM, Dimroth P., Structure 15(8), 2007
PMID: 17697996
The 2.8-A structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis.
Bianchet MA, Hullihen J, Pedersen PL, Amzel LM., Proc. Natl. Acad. Sci. U.S.A. 95(19), 1998
PMID: 9736690
The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.
Gibbons C, Montgomery MG, Leslie AG, Walker JE., Nat. Struct. Biol. 7(11), 2000
PMID: 11062563
Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism.
Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH., J. Biol. Chem. 281(19), 2006
PMID: 16531409
Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase.
Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM., EMBO J. 25(22), 2006
PMID: 17082766

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19003877
PubMed | Europe PMC

Suchen in

Google Scholar