A note on standard borel and related spaces

Preston C (2009)
Journal of Contemporary Mathematical Analysis 44(1): 63-71.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The following is a fundamental construction in the theory of point processes: For a measurable space (X, ɛ) let X ◃ denote the set of all measures on (X, ɛ) taking only values in the set ℕ (and so each p ∈ X ◃ is a finite measure, since p(X) ∈ ℕ); put ɛ ◃ = σ(ɛ ◊), where ɛ ◊ is the set of all subsets of X ◃ having the form {p ∈ X ◃: p(E) = k} with E ∈ ɛ and k ∈ ℕ.
Stichworte
Point processes; standard Borel space; metrisable topological space
Erscheinungsjahr
2009
Zeitschriftentitel
Journal of Contemporary Mathematical Analysis
Band
44
Ausgabe
1
Seite(n)
63-71
ISSN
1068-3623
Page URI
https://pub.uni-bielefeld.de/record/1633672

Zitieren

Preston C. A note on standard borel and related spaces. Journal of Contemporary Mathematical Analysis . 2009;44(1):63-71.
Preston, C. (2009). A note on standard borel and related spaces. Journal of Contemporary Mathematical Analysis , 44(1), 63-71. https://doi.org/10.3103/S1068362309010105
Preston, C. (2009). A note on standard borel and related spaces. Journal of Contemporary Mathematical Analysis 44, 63-71.
Preston, C., 2009. A note on standard borel and related spaces. Journal of Contemporary Mathematical Analysis , 44(1), p 63-71.
C. Preston, “A note on standard borel and related spaces”, Journal of Contemporary Mathematical Analysis , vol. 44, 2009, pp. 63-71.
Preston, C.: A note on standard borel and related spaces. Journal of Contemporary Mathematical Analysis . 44, 63-71 (2009).
Preston, Christopher. “A note on standard borel and related spaces”. Journal of Contemporary Mathematical Analysis 44.1 (2009): 63-71.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar