Elementary non-Archimedean utility theory
Herzberg F (2009)
MATHEMATICAL SOCIAL SCIENCES 58(1): 8-14.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Herberg2009MSS_oa.pdf
464.88 KB
Autor*in
Abstract / Bemerkung
A non-Archimedean utility representation theorem for independent and transitive preference orderings that are partially continuous on some convex subset and satisfy an axiom of incommensurable preference for elements outside that subset is proven. For complete preference orderings, the theorem is deduced directly from the classical von Neumann-Morgenstern theorem; in the absence of completeness, Aumann's [Aumann, R.J., 1962. Utility theory without the completeness axiom. Econometrica 30 (3), 445-462] generalization is utilized. (C) 2009 Elsevier B.V. All rights reserved.
Stichworte
Discontinuous preferences;
von Neumann-Morgenstern utility;
Ordered;
vector space;
Hyperreals;
Non-Archimedean field
Erscheinungsjahr
2009
Zeitschriftentitel
MATHEMATICAL SOCIAL SCIENCES
Band
58
Ausgabe
1
Seite(n)
8-14
ISSN
0165-4896
Page URI
https://pub.uni-bielefeld.de/record/1633653
Zitieren
Herzberg F. Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES. 2009;58(1):8-14.
Herzberg, F. (2009). Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES, 58(1), 8-14. https://doi.org/10.1016/j.mathsocsci.2008.12.009
Herzberg, Frederik. 2009. “Elementary non-Archimedean utility theory”. MATHEMATICAL SOCIAL SCIENCES 58 (1): 8-14.
Herzberg, F. (2009). Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES 58, 8-14.
Herzberg, F., 2009. Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES, 58(1), p 8-14.
F. Herzberg, “Elementary non-Archimedean utility theory”, MATHEMATICAL SOCIAL SCIENCES, vol. 58, 2009, pp. 8-14.
Herzberg, F.: Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES. 58, 8-14 (2009).
Herzberg, Frederik. “Elementary non-Archimedean utility theory”. MATHEMATICAL SOCIAL SCIENCES 58.1 (2009): 8-14.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Herberg2009MSS_oa.pdf
464.88 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:05Z
MD5 Prüfsumme
84d03e1dc103a88d04ea815cecb31b1c
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in