Elementary non-Archimedean utility theory

Herzberg F (2009)
MATHEMATICAL SOCIAL SCIENCES 58(1): 8-14.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
OA 464.88 KB
Abstract / Bemerkung
A non-Archimedean utility representation theorem for independent and transitive preference orderings that are partially continuous on some convex subset and satisfy an axiom of incommensurable preference for elements outside that subset is proven. For complete preference orderings, the theorem is deduced directly from the classical von Neumann-Morgenstern theorem; in the absence of completeness, Aumann's [Aumann, R.J., 1962. Utility theory without the completeness axiom. Econometrica 30 (3), 445-462] generalization is utilized. (C) 2009 Elsevier B.V. All rights reserved.
Stichworte
Discontinuous preferences; von Neumann-Morgenstern utility; Ordered; vector space; Hyperreals; Non-Archimedean field
Erscheinungsjahr
2009
Zeitschriftentitel
MATHEMATICAL SOCIAL SCIENCES
Band
58
Ausgabe
1
Seite(n)
8-14
ISSN
0165-4896
Page URI
https://pub.uni-bielefeld.de/record/1633653

Zitieren

Herzberg F. Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES. 2009;58(1):8-14.
Herzberg, F. (2009). Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES, 58(1), 8-14. doi:10.1016/j.mathsocsci.2008.12.009
Herzberg, F. (2009). Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES 58, 8-14.
Herzberg, F., 2009. Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES, 58(1), p 8-14.
F. Herzberg, “Elementary non-Archimedean utility theory”, MATHEMATICAL SOCIAL SCIENCES, vol. 58, 2009, pp. 8-14.
Herzberg, F.: Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES. 58, 8-14 (2009).
Herzberg, Frederik. “Elementary non-Archimedean utility theory”. MATHEMATICAL SOCIAL SCIENCES 58.1 (2009): 8-14.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:05Z
MD5 Prüfsumme
84d03e1dc103a88d04ea815cecb31b1c