Toy amphiphiles on the computer: What can we learn from generic models?

Schmid F (2009)
Macromolecular Rapid Communications 30(9-10): 741-751.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schmid, Friederike
Abstract / Bemerkung
Generic coarse-grained models are designed such that they are (i) simple and (ii) computationally efficient. A priori, they do not aim at representing particular materials, but classes of materials, hence they can offer insight into universal properties of these classes. Here we review generic models for amphiphilic molecules and discuss applications in studies of self-assembling nanostructures and the local structure of bilayer membranes, i.e., their phases and their interactions with nanosized inclusions. Special attention is given to the comparison of simulations with elastic continuum models, which are, in some sense, generic models on a higher coarse-graining level. In many cases, it is possible to bridge quantitatively between generic particle models and continuum models, hence multiscale modeling works on principle. On the other side, generic simulations can help to interpret experiments by providing information that is not accessible otherwise.
Stichworte
amphiphiles; block copolymers; membranes; lipids; elastic theory; micelles; phase diagrams; simulations; modeling
Erscheinungsjahr
2009
Zeitschriftentitel
Macromolecular Rapid Communications
Band
30
Ausgabe
9-10
Seite(n)
741-751
ISSN
1022-1336
Page URI
https://pub.uni-bielefeld.de/record/1633359

Zitieren

Schmid F. Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications. 2009;30(9-10):741-751.
Schmid, F. (2009). Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications, 30(9-10), 741-751. https://doi.org/10.1002/marc.200800750
Schmid, Friederike. 2009. “Toy amphiphiles on the computer: What can we learn from generic models?”. Macromolecular Rapid Communications 30 (9-10): 741-751.
Schmid, F. (2009). Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications 30, 741-751.
Schmid, F., 2009. Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications, 30(9-10), p 741-751.
F. Schmid, “Toy amphiphiles on the computer: What can we learn from generic models?”, Macromolecular Rapid Communications, vol. 30, 2009, pp. 741-751.
Schmid, F.: Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications. 30, 741-751 (2009).
Schmid, Friederike. “Toy amphiphiles on the computer: What can we learn from generic models?”. Macromolecular Rapid Communications 30.9-10 (2009): 741-751.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The impact of resolution upon entropy and information in coarse-grained models.
Foley TT, Shell MS, Noid WG., J Chem Phys 143(24), 2015
PMID: 26723589
Coarse-grained simulations of membranes under tension.
Neder J, West B, Nielaba P, Schmid F., J Chem Phys 132(11), 2010
PMID: 20331316

128 References

Daten bereitgestellt von Europe PubMed Central.


Gompper, 1994

Israelachvili, 1991

AUTHOR UNKNOWN, 1994

Gennis, 1989

AUTHOR UNKNOWN, 1995

Matsen, J. Phys.: Cond. Matt. 14(), 2002

Safran, 1994

Helfrich, Z. Naturforschung C 28(), 1973

Varandas, Adv. Chem. Phys. 74(), 1988

Smith, J. Chem. Phys. 102(), 1998

Müller-Plathe, Chemphyschem 3(), 2002

Izvekov, J. Chem. Phys. 12(), 2005

Wheeler, J. Am. Chem. Soc. 90(), 1968

Schmid, 2000

Schmid, 2006

Komura, J. Phys.: Cond. Matt. 46(), 2007

Venturoli, Phys. Rep. 437(), 2006

Müller, Phys. Rep. 434(), 2006
Implicit solvent simulation models for biomembranes.
Brannigan G, Lin LC, Brown FL., Eur. Biophys. J. 35(2), 2005
PMID: 16187129

Shillcock, J. Phys.: Cond. Matter 18(), 2006

Halley, J. Chem. Phys. 88(), 1988

Gunn, J. Chem. Phys. 96(), 1991

Matsen, Phys. Rev. E 51(), 1994

Linhananta, Phys. Rev. E 57(), 1998
Monte Carlo study of interfacial properties in an amphiphilic system.
Schmid F, Schick M., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(1), 1994
PMID: 9961238

Larson, J. Chem. Phys. 83(), 1985

Larson, J Physique II 6(), 1996
Anomalous phase separation dynamics in the presence of surfactants.
Bernardes AT, Liverpool TB, Stauffer D., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54(3), 1996
PMID: 9965446

Smit, Nature 348(), 1990

Smit, J. Phys. Chem. 95(), 1991
Simulating the self-assembly of gemini (dimeric) surfactants.
Karaborni S, Esselink K, Hilbers PA, Smit B, Karthauser J, van Os NM, Zana R., Science 266(5183), 1994
PMID: 17771445

Götz, J. Chem. Phys. 108(), 1998

Soddemann, Europ. Phys. J. E 6(), 2001
Nonequilibrium molecular dynamics simulation of shear-induced alignment of amphiphilic model systems.
Guo H, Kremer K, Soddemann T., Phys Rev E Stat Nonlin Soft Matter Phys 66(6 Pt 1), 2002
PMID: 12513288
Nonequilibrium molecular dynamics simulation of shear-induced alignment of amphiphilic model systems.
Guo H, Kremer K, Soddemann T., Phys Rev E Stat Nonlin Soft Matter Phys 66(6 Pt 1), 2002
PMID: 12513288
Shear-induced undulation of smectic-A: Molecular Dynamics simulations vs. analytical theory.
Soddemann T, Auernhammer GK, Guo H, Dunweg B, Kremer K., Eur Phys J E Soft Matter 13(2), 2004
PMID: 15052424

Loison, J. Chem. Phys. 119(), 2003

Loison, Comp. Phys. Comm. 169(), 2005
On the orientation of lamellar block copolymer phases under shear.
Fraser B, Denniston C, Muser MH., J Chem Phys 124(10), 2006
PMID: 16542099
Tunable generic model for fluid bilayer membranes.
Cooke IR, Kremer K, Deserno M., Phys Rev E Stat Nonlin Soft Matter Phys 72(1 Pt 1), 2005
PMID: 16089969

von, J. Chem. Phys. 106(), 1997

von, J. Chem. Phys. 108(), 1998

Bhattacharya, J. Chem. Phys. 108(), 1998
Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation.
Noguchi H, Takasu M., Phys Rev E Stat Nonlin Soft Matter Phys 64(4 Pt 1), 2001
PMID: 11690058

Farago, J. Chem. Phys. 119(), 2003

Brannigan, Phys. Rev. E 72(), 2005

Lenz, J. Mol. Liquids 117(), 2005

Carmesin, Macromolecules 21(), 1988

Grest, J. Chem. Phys. 23(), 1996

Helfand, J. Polym. Sci. B 9(), 1971

Helfand, J. Chem. Phys. 56(), 1971

Schmid, J. Phys.: Cond. Matt. 10(), 1998

Shull, Macromolecules 25(), 1992

Shull, Macromolecules 26(), 1993

Whitmore, Macromolecules 18(), 1985
Stable and unstable phases of a diblock copolymer melt.
Matsen MW, Schick M., Phys. Rev. Lett. 72(16), 1994
PMID: 10055940

Werner, Macromolecules 29(), 1996

Werner, J. Chem. Phys. 110(), 1999

Werner, Phys. Rev. E 59(), 1999

Fraaije, J. Chem. Phys. 99(), 1993

Fraaije, J. Chem. Phys. 106(), 1997

Maurits, J. Chem. Phys. 107(), 1997

Maurits, J. Chem. Phys. 108(), 1998

Ganesan, Europhys. Lett. 55(), 2001

Fredrickson, Macromolecules 35(), 2002

Düchs, Macromolecules 36(), 2003

Müller, 2005

Fredrickson, 2006

Lei, J. Phys. II 5(), 1995

Zhang, Macromolecules 29(), 1996

Shen, Angew. Chem., Int. Ed. 39(), 2000
Self-assembly of block copolymer micelles in an ionic liquid.
He Y, Li Z, Simone P, Lodge TP., J. Am. Chem. Soc. 128(8), 2006
PMID: 16492063

Pochan, Science 306(), 2004

Noguchi, J. Chem. Phys. 115(), 2001

Yamamoto, J. Chem. Phys. 116(), 2002

Sevink, Macromolecules 38(), 2005

Sevink, Mol. Sim. 33(), 2007

Doi, 1986

He, Macromolecules 39(), 2006

He, Macromolecules 39(), 2006
Spontaneous formation of complex micelles from a homogeneous solution.
He X, Schmid F., Phys. Rev. Lett. 100(13), 2008
PMID: 18517999
Phases and phase transitions of the hydrated phosphatidylethanolamines.
Koynova R, Caffrey M., Chem. Phys. Lipids 69(1), 1994
PMID: 8200054
Phases and phase transitions of the phosphatidylcholines.
Koynova R, Caffrey M., Biochim. Biophys. Acta 1376(1), 1998
PMID: 9666088

Kranenburg, Phys. Rev. E 67(), 2003
Phase behavior of model lipid bilayers.
Kranenburg M, Smit B., J Phys Chem B 109(14), 2005
PMID: 16851736

Schmid, J. Chem. Phys. 102(), 1995

Schmid, Comp. Phys. Comm. 177(), 2007

Haas, J. Chem. Phys. 102(), 1995

Haas, J. Phys. Chem. 100(), 1996

Haas, J. Chem. Phys. 105(), 1996

Schmid, J. Chem. Phys. 106(), 1997

Stadler, Phys. Rev. E 59(), 1999

Stadler, J. Chem. Phys. 110(), 1999

Düchs, J. Phys: Cond. Matt. 13(), 2001
Structure of symmetric and asymmetric "ripple" phases in lipid bilayers.
Lenz O, Schmid F., Phys. Rev. Lett. 98(5), 2007
PMID: 17358906
Membrane-protein interactions in a generic coarse-grained model for lipid bilayers.
West B, Brown FL, Schmid F., Biophys. J. 96(1), 2009
PMID: 18835907
Elastic curvature constants of lipid monolayers and bilayers.
Marsh D., Chem. Phys. Lipids 144(2), 2006
PMID: 17045578

Lindahl, J. Chem. Phys. 113(), 2000
The MARTINI force field: coarse grained model for biomolecular simulations.
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH., J Phys Chem B 111(27), 2007
PMID: 17569554
Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples.
Katsaras J, Tristram-Nagle S, Liu Y, Headrick RL, Fontes E, Mason PC, Nagle JF., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61(5 Pt B), 2000
PMID: 11031625
Molecular structure of the lecithin ripple phase.
de Vries AH, Yefimov S, Mark AE, Marrink SJ., Proc. Natl. Acad. Sci. U.S.A. 102(15), 2005
PMID: 15809443
Structure of the ripple phase of phospholipid multibilayers.
Sengupta K, Raghunathan VA, Katsaras J., Phys Rev E Stat Nonlin Soft Matter Phys 68(3 Pt 1), 2003
PMID: 14524791

Kranenburg, Phys. Chem. Chem. Phys. 6(), 2004
Molecular mechanism of antimicrobial peptides: the origin of cooperativity.
Huang HW., Biochim. Biophys. Acta 1758(9), 2006
PMID: 16542637
Entropy-driven softening of fluid lipid bilayers by alamethicin.
Pabst G, Danner S, Podgornik R, Katsaras J., Langmuir 23(23), 2007
PMID: 17939689
Hydrophobic mismatch between proteins and lipids in membranes.
Killian JA., Biochim. Biophys. Acta 1376(3), 1998
PMID: 9805000
Molecular simulations of lipid-mediated protein-protein interactions.
de Meyer FJ, Venturoli M, Smit B., Biophys. J. 95(4), 2008
PMID: 18487292
Cluster formation of transmembrane proteins due to hydrophobic mismatching.
Schmidt U, Guigas G, Weiss M., Phys. Rev. Lett. 101(12), 2008
PMID: 18851417

Venturoli, Biophys. J. 59(), 2008

Cordomi, J. Phys. Chem. B 111(), 2007

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21706660
PubMed | Europe PMC

Suchen in

Google Scholar