Toy amphiphiles on the computer: What can we learn from generic models?
Schmid F (2009)
Macromolecular Rapid Communications 30(9-10): 741-751.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schmid, Friederike
Einrichtung
Abstract / Bemerkung
Generic coarse-grained models are designed such that they are (i) simple and (ii) computationally efficient. A priori, they do not aim at representing particular materials, but classes of materials, hence they can offer insight into universal properties of these classes. Here we review generic models for amphiphilic molecules and discuss applications in studies of self-assembling nanostructures and the local structure of bilayer membranes, i.e., their phases and their interactions with nanosized inclusions. Special attention is given to the comparison of simulations with elastic continuum models, which are, in some sense, generic models on a higher coarse-graining level. In many cases, it is possible to bridge quantitatively between generic particle models and continuum models, hence multiscale modeling works on principle. On the other side, generic simulations can help to interpret experiments by providing information that is not accessible otherwise.
Stichworte
amphiphiles;
block copolymers;
membranes;
lipids;
elastic theory;
micelles;
phase diagrams;
simulations;
modeling
Erscheinungsjahr
2009
Zeitschriftentitel
Macromolecular Rapid Communications
Band
30
Ausgabe
9-10
Seite(n)
741-751
ISSN
1022-1336
Page URI
https://pub.uni-bielefeld.de/record/1633359
Zitieren
Schmid F. Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications. 2009;30(9-10):741-751.
Schmid, F. (2009). Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications, 30(9-10), 741-751. https://doi.org/10.1002/marc.200800750
Schmid, Friederike. 2009. “Toy amphiphiles on the computer: What can we learn from generic models?”. Macromolecular Rapid Communications 30 (9-10): 741-751.
Schmid, F. (2009). Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications 30, 741-751.
Schmid, F., 2009. Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications, 30(9-10), p 741-751.
F. Schmid, “Toy amphiphiles on the computer: What can we learn from generic models?”, Macromolecular Rapid Communications, vol. 30, 2009, pp. 741-751.
Schmid, F.: Toy amphiphiles on the computer: What can we learn from generic models? Macromolecular Rapid Communications. 30, 741-751 (2009).
Schmid, Friederike. “Toy amphiphiles on the computer: What can we learn from generic models?”. Macromolecular Rapid Communications 30.9-10 (2009): 741-751.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
4 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
The impact of resolution upon entropy and information in coarse-grained models.
Foley TT, Shell MS, Noid WG., J Chem Phys 143(24), 2015
PMID: 26723589
Foley TT, Shell MS, Noid WG., J Chem Phys 143(24), 2015
PMID: 26723589
Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids.
Dunn NJ, Noid WG., J Chem Phys 143(24), 2015
PMID: 26723633
Dunn NJ, Noid WG., J Chem Phys 143(24), 2015
PMID: 26723633
Perspective: Coarse-grained models for biomolecular systems.
Noid WG., J Chem Phys 139(9), 2013
PMID: 24028092
Noid WG., J Chem Phys 139(9), 2013
PMID: 24028092
Coarse-grained simulations of membranes under tension.
Neder J, West B, Nielaba P, Schmid F., J Chem Phys 132(11), 2010
PMID: 20331316
Neder J, West B, Nielaba P, Schmid F., J Chem Phys 132(11), 2010
PMID: 20331316
128 References
Daten bereitgestellt von Europe PubMed Central.
Gompper, 1994
Israelachvili, 1991
AUTHOR UNKNOWN, 1994
Gennis, 1989
AUTHOR UNKNOWN, 1995
Matsen, J. Phys.: Cond. Matt. 14(), 2002
Safran, 1994
Helfrich, Z. Naturforschung C 28(), 1973
Varandas, Adv. Chem. Phys. 74(), 1988
Smith, J. Chem. Phys. 102(), 1998
Müller-Plathe, Chemphyschem 3(), 2002
Izvekov, J. Chem. Phys. 12(), 2005
Wheeler, J. Am. Chem. Soc. 90(), 1968
Schmid, 2000
Schmid, 2006
Komura, J. Phys.: Cond. Matt. 46(), 2007
Venturoli, Phys. Rep. 437(), 2006
Müller, Phys. Rep. 434(), 2006
Implicit solvent simulation models for biomembranes.
Brannigan G, Lin LC, Brown FL., Eur. Biophys. J. 35(2), 2005
PMID: 16187129
Brannigan G, Lin LC, Brown FL., Eur. Biophys. J. 35(2), 2005
PMID: 16187129
Shillcock, J. Phys.: Cond. Matter 18(), 2006
Insight or illusion? Seeing inside the cell with mesoscopic simulations.
Shillcock JC., HFSP J 2(1), 2008
PMID: 19404447
Shillcock JC., HFSP J 2(1), 2008
PMID: 19404447
Halley, J. Chem. Phys. 88(), 1988
Gunn, J. Chem. Phys. 96(), 1991
Matsen, Phys. Rev. E 51(), 1994
Linhananta, Phys. Rev. E 57(), 1998
Monte Carlo study of interfacial properties in an amphiphilic system.
Schmid F, Schick M., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(1), 1994
PMID: 9961238
Schmid F, Schick M., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(1), 1994
PMID: 9961238
Larson, J. Chem. Phys. 83(), 1985
Larson, J Physique II 6(), 1996
Anomalous phase separation dynamics in the presence of surfactants.
Bernardes AT, Liverpool TB, Stauffer D., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54(3), 1996
PMID: 9965446
Bernardes AT, Liverpool TB, Stauffer D., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54(3), 1996
PMID: 9965446
Smit, Nature 348(), 1990
Smit, J. Phys. Chem. 95(), 1991
Simulating the self-assembly of gemini (dimeric) surfactants.
Karaborni S, Esselink K, Hilbers PA, Smit B, Karthauser J, van Os NM, Zana R., Science 266(5183), 1994
PMID: 17771445
Karaborni S, Esselink K, Hilbers PA, Smit B, Karthauser J, van Os NM, Zana R., Science 266(5183), 1994
PMID: 17771445
Götz, J. Chem. Phys. 108(), 1998
Soddemann, Europ. Phys. J. E 6(), 2001
Nonequilibrium molecular dynamics simulation of shear-induced alignment of amphiphilic model systems.
Guo H, Kremer K, Soddemann T., Phys Rev E Stat Nonlin Soft Matter Phys 66(6 Pt 1), 2002
PMID: 12513288
Guo H, Kremer K, Soddemann T., Phys Rev E Stat Nonlin Soft Matter Phys 66(6 Pt 1), 2002
PMID: 12513288
Nonequilibrium molecular dynamics simulation of shear-induced alignment of amphiphilic model systems.
Guo H, Kremer K, Soddemann T., Phys Rev E Stat Nonlin Soft Matter Phys 66(6 Pt 1), 2002
PMID: 12513288
Guo H, Kremer K, Soddemann T., Phys Rev E Stat Nonlin Soft Matter Phys 66(6 Pt 1), 2002
PMID: 12513288
Shear-induced undulation of smectic-A: Molecular Dynamics simulations vs. analytical theory.
Soddemann T, Auernhammer GK, Guo H, Dunweg B, Kremer K., Eur Phys J E Soft Matter 13(2), 2004
PMID: 15052424
Soddemann T, Auernhammer GK, Guo H, Dunweg B, Kremer K., Eur Phys J E Soft Matter 13(2), 2004
PMID: 15052424
Loison, J. Chem. Phys. 119(), 2003
Pores in bilayer membranes of amphiphilic molecules: coarse-grained molecular dynamics simulations compared with simple mesoscopic models.
Loison C, Mareschal M, Schmid F., J Chem Phys 121(4), 2004
PMID: 15260741
Loison C, Mareschal M, Schmid F., J Chem Phys 121(4), 2004
PMID: 15260741
Loison, Comp. Phys. Comm. 169(), 2005
A computer simulation study of the segregation of amphiphiles in binary immiscible matrices: short asymmetric copolymers in short homopolymers.
Guo H, Olvera de la Cruz M., J Chem Phys 123(17), 2005
PMID: 16375565
Guo H, Olvera de la Cruz M., J Chem Phys 123(17), 2005
PMID: 16375565
Shear-induced parallel-to-perpendicular orientation transition in the amphiphilic lamellar phase: a nonequilibrium molecular-dynamics simulation study.
Guo H., J Chem Phys 124(5), 2006
PMID: 16468913
Guo H., J Chem Phys 124(5), 2006
PMID: 16468913
On the orientation of lamellar block copolymer phases under shear.
Fraser B, Denniston C, Muser MH., J Chem Phys 124(10), 2006
PMID: 16542099
Fraser B, Denniston C, Muser MH., J Chem Phys 124(10), 2006
PMID: 16542099
Tunable generic model for fluid bilayer membranes.
Cooke IR, Kremer K, Deserno M., Phys Rev E Stat Nonlin Soft Matter Phys 72(1 Pt 1), 2005
PMID: 16089969
Cooke IR, Kremer K, Deserno M., Phys Rev E Stat Nonlin Soft Matter Phys 72(1 Pt 1), 2005
PMID: 16089969
von, J. Chem. Phys. 106(), 1997
von, J. Chem. Phys. 108(), 1998
Bhattacharya, J. Chem. Phys. 108(), 1998
Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation.
Noguchi H, Takasu M., Phys Rev E Stat Nonlin Soft Matter Phys 64(4 Pt 1), 2001
PMID: 11690058
Noguchi H, Takasu M., Phys Rev E Stat Nonlin Soft Matter Phys 64(4 Pt 1), 2001
PMID: 11690058
Farago, J. Chem. Phys. 119(), 2003
Brannigan, Phys. Rev. E 72(), 2005
Modeling flexible amphiphilic bilayers: a solvent-free off-lattice Monte Carlo study.
Wang ZJ, Frenkel D., J Chem Phys 122(23), 2005
PMID: 16008477
Wang ZJ, Frenkel D., J Chem Phys 122(23), 2005
PMID: 16008477
Lenz, J. Mol. Liquids 117(), 2005
Carmesin, Macromolecules 21(), 1988
Grest, J. Chem. Phys. 23(), 1996
Helfand, J. Polym. Sci. B 9(), 1971
Helfand, J. Chem. Phys. 56(), 1971
Schmid, J. Phys.: Cond. Matt. 10(), 1998
Shull, Macromolecules 25(), 1992
Shull, Macromolecules 26(), 1993
Whitmore, Macromolecules 18(), 1985
Stable and unstable phases of a diblock copolymer melt.
Matsen MW, Schick M., Phys. Rev. Lett. 72(16), 1994
PMID: 10055940
Matsen MW, Schick M., Phys. Rev. Lett. 72(16), 1994
PMID: 10055940
Werner, Macromolecules 29(), 1996
Werner, J. Chem. Phys. 110(), 1999
Werner, Phys. Rev. E 59(), 1999
Fraaije, J. Chem. Phys. 99(), 1993
Fraaije, J. Chem. Phys. 106(), 1997
Maurits, J. Chem. Phys. 107(), 1997
Maurits, J. Chem. Phys. 108(), 1998
Ganesan, Europhys. Lett. 55(), 2001
Fredrickson, Macromolecules 35(), 2002
Düchs, Macromolecules 36(), 2003
Müller, 2005
Fredrickson, 2006
Lei, J. Phys. II 5(), 1995
Zhang, Macromolecules 29(), 1996
Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers
Zhang L, Yu K, Eisenberg A., Science 272(5269), 1996
PMID: 8662482
Zhang L, Yu K, Eisenberg A., Science 272(5269), 1996
PMID: 8662482
Shen, Angew. Chem., Int. Ed. 39(), 2000
Self-assembly of block copolymer micelles in an ionic liquid.
He Y, Li Z, Simone P, Lodge TP., J. Am. Chem. Soc. 128(8), 2006
PMID: 16492063
He Y, Li Z, Simone P, Lodge TP., J. Am. Chem. Soc. 128(8), 2006
PMID: 16492063
On the origins of morphological complexity in block copolymer surfactants.
Jain S, Bates FS., Science 300(5618), 2003
PMID: 12702869
Jain S, Bates FS., Science 300(5618), 2003
PMID: 12702869
Pochan, Science 306(), 2004
Noguchi, J. Chem. Phys. 115(), 2001
Yamamoto, J. Chem. Phys. 116(), 2002
Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail.
de Vries AH, Mark AE, Marrink SJ., J. Am. Chem. Soc. 126(14), 2004
PMID: 15070345
de Vries AH, Mark AE, Marrink SJ., J. Am. Chem. Soc. 126(14), 2004
PMID: 15070345
Sevink, Macromolecules 38(), 2005
Sevink, Mol. Sim. 33(), 2007
Doi, 1986
He, Macromolecules 39(), 2006
He, Macromolecules 39(), 2006
Spontaneous formation of complex micelles from a homogeneous solution.
He X, Schmid F., Phys. Rev. Lett. 100(13), 2008
PMID: 18517999
He X, Schmid F., Phys. Rev. Lett. 100(13), 2008
PMID: 18517999
Phases and phase transitions of the hydrated phosphatidylethanolamines.
Koynova R, Caffrey M., Chem. Phys. Lipids 69(1), 1994
PMID: 8200054
Koynova R, Caffrey M., Chem. Phys. Lipids 69(1), 1994
PMID: 8200054
Phases and phase transitions of the phosphatidylcholines.
Koynova R, Caffrey M., Biochim. Biophys. Acta 1376(1), 1998
PMID: 9666088
Koynova R, Caffrey M., Biochim. Biophys. Acta 1376(1), 1998
PMID: 9666088
Kranenburg, Phys. Rev. E 67(), 2003
Phase behavior of model lipid bilayers.
Kranenburg M, Smit B., J Phys Chem B 109(14), 2005
PMID: 16851736
Kranenburg M, Smit B., J Phys Chem B 109(14), 2005
PMID: 16851736
Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases.
Tardieu A, Luzzati V, Reman FC., J. Mol. Biol. 75(4), 1973
PMID: 4738730
Tardieu A, Luzzati V, Reman FC., J. Mol. Biol. 75(4), 1973
PMID: 4738730
Schmid, J. Chem. Phys. 102(), 1995
Schmid, Comp. Phys. Comm. 177(), 2007
Haas, J. Chem. Phys. 102(), 1995
Haas, J. Phys. Chem. 100(), 1996
Haas, J. Chem. Phys. 105(), 1996
Schmid, J. Chem. Phys. 106(), 1997
Stadler, Phys. Rev. E 59(), 1999
Stadler, J. Chem. Phys. 110(), 1999
Düchs, J. Phys: Cond. Matt. 13(), 2001
Structure of symmetric and asymmetric "ripple" phases in lipid bilayers.
Lenz O, Schmid F., Phys. Rev. Lett. 98(5), 2007
PMID: 17358906
Lenz O, Schmid F., Phys. Rev. Lett. 98(5), 2007
PMID: 17358906
A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers.
Brannigan G, Brown FL., Biophys. J. 90(5), 2005
PMID: 16326916
Brannigan G, Brown FL., Biophys. J. 90(5), 2005
PMID: 16326916
Membrane-protein interactions in a generic coarse-grained model for lipid bilayers.
West B, Brown FL, Schmid F., Biophys. J. 96(1), 2009
PMID: 18835907
West B, Brown FL, Schmid F., Biophys. J. 96(1), 2009
PMID: 18835907
Elastic curvature constants of lipid monolayers and bilayers.
Marsh D., Chem. Phys. Lipids 144(2), 2006
PMID: 17045578
Marsh D., Chem. Phys. Lipids 144(2), 2006
PMID: 17045578
Lindahl, J. Chem. Phys. 113(), 2000
The MARTINI force field: coarse grained model for biomolecular simulations.
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH., J Phys Chem B 111(27), 2007
PMID: 17569554
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH., J Phys Chem B 111(27), 2007
PMID: 17569554
Time-resolved x-ray diffraction and calorimetric studies at low scan rates: I. Fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases.
Tenchov BG, Yao H, Hatta I., Biophys. J. 56(4), 1989
PMID: 19431747
Tenchov BG, Yao H, Hatta I., Biophys. J. 56(4), 1989
PMID: 19431747
Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples.
Katsaras J, Tristram-Nagle S, Liu Y, Headrick RL, Fontes E, Mason PC, Nagle JF., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61(5 Pt B), 2000
PMID: 11031625
Katsaras J, Tristram-Nagle S, Liu Y, Headrick RL, Fontes E, Mason PC, Nagle JF., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61(5 Pt B), 2000
PMID: 11031625
Molecular structure of the lecithin ripple phase.
de Vries AH, Yefimov S, Mark AE, Marrink SJ., Proc. Natl. Acad. Sci. U.S.A. 102(15), 2005
PMID: 15809443
de Vries AH, Yefimov S, Mark AE, Marrink SJ., Proc. Natl. Acad. Sci. U.S.A. 102(15), 2005
PMID: 15809443
Structure of the ripple phase of phospholipid multibilayers.
Sengupta K, Raghunathan VA, Katsaras J., Phys Rev E Stat Nonlin Soft Matter Phys 68(3 Pt 1), 2003
PMID: 14524791
Sengupta K, Raghunathan VA, Katsaras J., Phys Rev E Stat Nonlin Soft Matter Phys 68(3 Pt 1), 2003
PMID: 14524791
Dipolar ordering in the ripple phases of molecular-scale models of lipid membranes.
Sun X, Gezelter JD., J Phys Chem B 112(7), 2008
PMID: 18225883
Sun X, Gezelter JD., J Phys Chem B 112(7), 2008
PMID: 18225883
Kranenburg, Phys. Chem. Chem. Phys. 6(), 2004
Molecular mechanism of antimicrobial peptides: the origin of cooperativity.
Huang HW., Biochim. Biophys. Acta 1758(9), 2006
PMID: 16542637
Huang HW., Biochim. Biophys. Acta 1758(9), 2006
PMID: 16542637
Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity.
Li C, Salditt T., Biophys. J. 91(9), 2006
PMID: 16920839
Li C, Salditt T., Biophys. J. 91(9), 2006
PMID: 16920839
Entropy-driven softening of fluid lipid bilayers by alamethicin.
Pabst G, Danner S, Podgornik R, Katsaras J., Langmuir 23(23), 2007
PMID: 17939689
Pabst G, Danner S, Podgornik R, Katsaras J., Langmuir 23(23), 2007
PMID: 17939689
Hydrophobic mismatch between proteins and lipids in membranes.
Killian JA., Biochim. Biophys. Acta 1376(3), 1998
PMID: 9805000
Killian JA., Biochim. Biophys. Acta 1376(3), 1998
PMID: 9805000
Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW., Biophys. J. 76(2), 1999
PMID: 9929495
Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW., Biophys. J. 76(2), 1999
PMID: 9929495
Organization of model helical peptides in lipid bilayers: insight into the behavior of single-span protein transmembrane domains.
Sharpe S, Barber KR, Grant CW, Goodyear D, Morrow MR., Biophys. J. 83(1), 2002
PMID: 12080125
Sharpe S, Barber KR, Grant CW, Goodyear D, Morrow MR., Biophys. J. 83(1), 2002
PMID: 12080125
Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring.
de Planque MR, Killian JA., Mol. Membr. Biol. 20(4), 2003
PMID: 14578043
de Planque MR, Killian JA., Mol. Membr. Biol. 20(4), 2003
PMID: 14578043
Molecular simulations of lipid-mediated protein-protein interactions.
de Meyer FJ, Venturoli M, Smit B., Biophys. J. 95(4), 2008
PMID: 18487292
de Meyer FJ, Venturoli M, Smit B., Biophys. J. 95(4), 2008
PMID: 18487292
Cluster formation of transmembrane proteins due to hydrophobic mismatching.
Schmidt U, Guigas G, Weiss M., Phys. Rev. Lett. 101(12), 2008
PMID: 18851417
Schmidt U, Guigas G, Weiss M., Phys. Rev. Lett. 101(12), 2008
PMID: 18851417
Contributions of Gaussian curvature and nonconstant lipid volume to protein deformation of lipid bilayers.
Brannigan G, Brown FL., Biophys. J. 92(3), 2006
PMID: 17098794
Brannigan G, Brown FL., Biophys. J. 92(3), 2006
PMID: 17098794
Venturoli, Biophys. J. 59(), 2008
Cordomi, J. Phys. Chem. B 111(), 2007
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 21706660
PubMed | Europe PMC
Suchen in