Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion

Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 283.99 KB
Mussgnug, Jan H.UniBi; Thomas-Hall, Skye; Rupprecht, Jens; Foo, Alexander; Klassen, Viktor; McDowall, Alasdair; Schenk, Peer M.; Kruse, OlafUniBi ; Hankamer, Ben
Abstract / Bemerkung
The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H-2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamydomonas reinhardtii) have evolved genetic strategies to assemble large light-harvesting antenna complexes (LHC) to maximize light capture under low-light conditions, with the downside that under high solar irradiance, most of the absorbed photons are wasted as fluorescence and heat to protect against photodamage. This limits the production process efficiency of mass culture. We applied RNAi technology to down-regulate the entire LHC gene family simultaneously to reduce energy losses by fluorescence and heat. The mutant Stm3LR3 had significantly reduced levels of LHCI and LHCII mRNAs and proteins while chlorophyll and pigment synthesis was functional. The grana were markedly less tightly stacked, consistent with the role of LHCII. Stm3LR3 also exhibited reduced levels of fluorescence, a higher photosynthetic quantum yield and a reduced sensitivity to photoinhibition, resulting in an increased efficiency of cell cultivation under elevated light conditions. Collectively, these properties offer three advantages in terms of algal bioreactor efficiency under natural high-light levels: (i) reduced fluorescence and LHC-dependent heat losses and thus increased photosynthetic efficiencies under high-light conditions; (ii) improved light penetration properties; and (iii) potentially reduced risk of oxidative photodamage of PSII.
photoinhibition; solar energy conversion; RNAi; biomass; light harvesting; photosynthesis
Page URI


Mussgnug JH, Thomas-Hall S, Rupprecht J, et al. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. PLANT BIOTECHNOLOGY JOURNAL. 2007;5(6):802-814.
Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., Schenk, P. M., et al. (2007). Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. PLANT BIOTECHNOLOGY JOURNAL, 5(6), 802-814.
Mussgnug, Jan H., Thomas-Hall, Skye, Rupprecht, Jens, Foo, Alexander, Klassen, Viktor, McDowall, Alasdair, Schenk, Peer M., Kruse, Olaf, and Hankamer, Ben. 2007. “Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion”. PLANT BIOTECHNOLOGY JOURNAL 5 (6): 802-814.
Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., Schenk, P. M., Kruse, O., and Hankamer, B. (2007). Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. PLANT BIOTECHNOLOGY JOURNAL 5, 802-814.
Mussgnug, J.H., et al., 2007. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. PLANT BIOTECHNOLOGY JOURNAL, 5(6), p 802-814.
J.H. Mussgnug, et al., “Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion”, PLANT BIOTECHNOLOGY JOURNAL, vol. 5, 2007, pp. 802-814.
Mussgnug, J.H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., Schenk, P.M., Kruse, O., Hankamer, B.: Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. PLANT BIOTECHNOLOGY JOURNAL. 5, 802-814 (2007).
Mussgnug, Jan H., Thomas-Hall, Skye, Rupprecht, Jens, Foo, Alexander, Klassen, Viktor, McDowall, Alasdair, Schenk, Peer M., Kruse, Olaf, and Hankamer, Ben. “Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion”. PLANT BIOTECHNOLOGY JOURNAL 5.6 (2007): 802-814.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

78 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Improvements in algal lipid production: a systems biology and gene editing approach.
Banerjee A, Banerjee C, Negi S, Chang JS, Shukla P., Crit Rev Biotechnol 38(3), 2018
PMID: 28793788
Deletion of the chloroplast LTD protein impedes LHCI import and PSI-LHCI assembly in Chlamydomonas reinhardtii.
Jeong J, Baek K, Yu J, Kirst H, Betterle N, Shin W, Bae S, Melis A, Jin E., J Exp Bot 69(5), 2018
PMID: 29300952
Cell size, photosynthesis and the package effect: an artificial selection approach.
Malerba ME, Palacios MM, Palacios Delgado YM, Beardall J, Marshall DJ., New Phytol 219(1), 2018
PMID: 29658153
Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production.
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P., Biotechnol Biofuels 11(), 2018
PMID: 29988523
High-throughput optimisation of light-driven microalgae biotechnologies.
Sivakaminathan S, Hankamer B, Wolf J, Yarnold J., Sci Rep 8(1), 2018
PMID: 30076312
Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production.
Savchenko O, Xing J, Yang X, Gu Q, Shaheen M, Huang M, Yu X, Burrell R, Patra P, Chen J., Sci Rep 7(), 2017
PMID: 28186124
Photosynthetic antenna engineering to improve crop yields.
Kirst H, Gabilly ST, Niyogi KK, Lemaux PG, Melis A., Planta 245(5), 2017
PMID: 28188423
Proteomic approaches in microalgae: perspectives and applications.
Anand V, Singh PK, Banerjee C, Shukla P., 3 Biotech 7(3), 2017
PMID: 28667637
Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.
Ng IS, Tan SI, Kao PH, Chang YK, Chang JS., Biotechnol J 12(10), 2017
PMID: 28786539
Challenges and opportunities for hydrogen production from microalgae.
Oey M, Sawyer AL, Ross IL, Hankamer B., Plant Biotechnol J 14(7), 2016
PMID: 26801871
Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis.
Kim JY, Kwak HS, Sung YJ, Choi HI, Hong ME, Lim HS, Lee JH, Lee SY, Sim SJ., Sci Rep 6(), 2016
PMID: 26852806
Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii.
Goold HD, Nguyen HM, Kong F, Beyly-Adriano A, Légeret B, Billon E, Cuiné S, Beisson F, Peltier G, Li-Beisson Y., Sci Rep 6(), 2016
PMID: 27141848
Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review.
Johnson TJ, Gibbons JL, Gu L, Zhou R, Gibbons WR., Biotechnol Prog 32(6), 2016
PMID: 27604481
Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture.
de Mooij T, Schediwy K, Wijffels RH, Janssen M., J Biotechnol 240(), 2016
PMID: 27746308
Enhancement of glycerol metabolism in the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to improve triacylglycerol productivity.
Muto M, Tanaka M, Liang Y, Yoshino T, Matsumoto M, Tanaka T., Biotechnol Biofuels 8(1), 2015
PMID: 25632299
Photosynthetic constraints on fuel from microbes.
Cotton CA, Douglass JS, De Causmaecker S, Brinkert K, Cardona T, Fantuzzi A, Rutherford AW, Murray JW., Front Bioeng Biotechnol 3(), 2015
PMID: 25853129
Microalgae as sustainable renewable energy feedstock for biofuel production.
Medipally SR, Yusoff FM, Banerjee S, Shariff M., Biomed Res Int 2015(), 2015
PMID: 25874216
CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
Yen HW, Ho SH, Chen CY, Chang JS., Biotechnol J 10(6), 2015
PMID: 25931246
Analysis of green algal growth via dynamic model simulation and process optimization.
Zhang D, Chanona EA, Vassiliadis VS, Tamburic B., Biotechnol Bioeng 112(10), 2015
PMID: 25855209
Genetic tools and techniques for Chlamydomonas reinhardtii.
Mussgnug JH., Appl Microbiol Biotechnol 99(13), 2015
PMID: 26025017
Cell Surface and Membrane Engineering: Emerging Technologies and Applications.
Saeui CT, Mathew MP, Liu L, Urias E, Yarema KJ., J Funct Biomater 6(2), 2015
PMID: 26096148
Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production.
Perin G, Bellan A, Segalla A, Meneghesso A, Alboresi A, Morosinotto T., Biotechnol Biofuels 8(), 2015
PMID: 26413160
In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.
Gimpel JA, Henríquez V, Mayfield SP., Front Microbiol 6(), 2015
PMID: 26696985
Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm.
Michels MH, Vaskoska M, Vermuë MH, Wijffels RH., Water Res 65(), 2014
PMID: 25150516
Synthetic genomics and synthetic biology applications between hopes and concerns.
König H, Frank D, Heil R, Coenen C., Curr Genomics 14(1), 2013
PMID: 23997647
RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.
Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B., PLoS One 8(4), 2013
PMID: 23613840
Algal biofuels.
Razeghifard R., Photosynth Res 117(1-3), 2013
PMID: 23605290
Advances in microalgae engineering and synthetic biology applications for biofuel production.
Gimpel JA, Specht EA, Georgianna DR, Mayfield SP., Curr Opin Chem Biol 17(3), 2013
PMID: 23684717
Trends in biohydrogen production: major challenges and state-of-the-art developments.
Gupta SK, Kumari S, Reddy K, Bux F., Environ Technol 34(13-16), 2013
PMID: 24350426
Optimization of light use efficiency for biofuel production in algae.
Simionato D, Basso S, Giacometti GM, Morosinotto T., Biophys Chem 182(), 2013
PMID: 23876487
Constraints to commercialization of algal fuels.
Chisti Y., J Biotechnol 167(3), 2013
PMID: 23886651
Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels.
Work VH, D'Adamo S, Radakovits R, Jinkerson RE, Posewitz MC., Curr Opin Biotechnol 23(3), 2012
PMID: 22172528
Integrated green algal technology for bioremediation and biofuel.
Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ., Bioresour Technol 107(), 2012
PMID: 22230775
A 3D image filter for parameter-free segmentation of macromolecular structures from electron tomograms.
Ali RA, Landsberg MJ, Knauth E, Morgan GP, Marsh BJ, Hankamer B., PLoS One 7(3), 2012
PMID: 22479430
Improving carbon fixation pathways.
Ducat DC, Silver PA., Curr Opin Chem Biol 16(3-4), 2012
PMID: 22647231
Application of synthetic biology in cyanobacteria and algae.
Wang B, Wang J, Zhang W, Meldrum DR., Front Microbiol 3(), 2012
PMID: 23049529
Renewable fuels from algae: an answer to debatable land based fuels.
Singh A, Nigam PS, Murphy JD., Bioresour Technol 102(1), 2011
PMID: 20615690
Engineering cyanobacteria to generate high-value products.
Ducat DC, Way JC, Silver PA., Trends Biotechnol 29(2), 2011
PMID: 21211860
Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement.
Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT., Science 332(6031), 2011
PMID: 21566184
Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors.
Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R., Photosynth Res 108(2-3), 2011
PMID: 21547493
Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem.
Al-Najjar MA, de Beer D, Jørgensen BB, Kühl M, Polerecky L., ISME J 4(3), 2010
PMID: 19907503
Placing microalgae on the biofuels priority list: a review of the technological challenges.
Greenwell HC, Laurens LM, Shields RJ, Lovitt RW, Flynn KJ., J R Soc Interface 7(46), 2010
PMID: 20031983
Genetic engineering of algae for enhanced biofuel production.
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC., Eukaryot Cell 9(4), 2010
PMID: 20139239
Microalgal hydrogen production.
Kruse O, Hankamer B., Curr Opin Biotechnol 21(3), 2010
PMID: 20399635
Developments and perspectives of photobioreactors for biofuel production.
Morweiser M, Kruse O, Hankamer B, Posten C., Appl Microbiol Biotechnol 87(4), 2010
PMID: 20535467
Future prospects of microalgal biofuel production systems.
Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B., Trends Plant Sci 15(10), 2010
PMID: 20655798
Plant-derived vaccines and other therapeutics produced in contained systems.
Franconi R, Demurtas OC, Massa S., Expert Rev Vaccines 9(8), 2010
PMID: 20673011
Diatoms in biotechnology: modern tools and applications.
Bozarth A, Maier UG, Zauner S., Appl Microbiol Biotechnol 82(2), 2009
PMID: 19082585
Raising yield potential in wheat.
Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MA, Snape JW, Angus WJ., J Exp Bot 60(7), 2009
PMID: 19363203
Closed photo-bioreactors as tools for biofuel production.
Lehr F, Posten C., Curr Opin Biotechnol 20(3), 2009
PMID: 19501503
Energy biotechnology with cyanobacteria.
Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJ., Curr Opin Biotechnol 20(3), 2009
PMID: 19540103
Engineering algae for biohydrogen and biofuel production.
Beer LL, Boyd ES, Peters JW, Posewitz MC., Curr Opin Biotechnol 20(3), 2009
PMID: 19560336
The technology of microalgal culturing.
Eriksen NT., Biotechnol Lett 30(9), 2008
PMID: 18478186
RNA silencing in plants: yesterday, today, and tomorrow.
Eamens A, Wang MB, Smith NA, Waterhouse PM., Plant Physiol 147(2), 2008
PMID: 18524877
Aquatic phototrophs: efficient alternatives to land-based crops for biofuels.
Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC., Curr Opin Biotechnol 19(3), 2008
PMID: 18539450
Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.
Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM., Eukaryot Cell 7(11), 2008
PMID: 18708561
A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution.
Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ., Curr Opin Biotechnol 19(5), 2008
PMID: 18725295

51 References

Daten bereitgestellt von Europe PubMed Central.

Photoinhibition - a historical perspective.
Adir N, Zer H, Shochat S, Ohad I., Photosyn. Res. 76(1-3), 2003
PMID: 16228592
Molecular recognition in thylakoid structure and function.
Allen JF, Forsberg J., Trends Plant Sci. 6(7), 2001
PMID: 11435171
Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness.
Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV, Horton P, Jansson S., Plant J. 35(3), 2003
PMID: 12887586

Organization of transmembrane helices in photosystem II: comparison of plants and cyanobacteria.
Barber J, Nield J., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357(1426), 2002
PMID: 12437871
Supramolecular structure of the photosystem II complex from green plants and cyanobacteria.
Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rogner M., Proc. Natl. Acad. Sci. U.S.A. 92(1), 1995
PMID: 7816811
Fluorescence and oxygen evolution from Chlorella pyrenoidosa.
Bonaventura C, Myers J., Biochim. Biophys. Acta 189(3), 1969
PMID: 5370012
Supramolecular organization of thylakoid membrane proteins in green plants.
Dekker JP, Boekema EJ., Biochim. Biophys. Acta 1706(1-2), 2005
PMID: 15620363

Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool.
Escoubas JM, Lomas M, LaRoche J, Falkowski PG., Proc. Natl. Acad. Sci. U.S.A. 92(22), 1995
PMID: 7479759
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC., Nature 391(6669), 1998
PMID: 9486653


Harris, 1989
A guide to the Lhc genes and their relatives in Arabidopsis/IT>
Jansson S., Trends Plant Sci. 4(6), 1999
PMID: 10366881
High-frequency nuclear transformation of Chlamydomonas reinhardtii.
Kindle KL., Proc. Natl. Acad. Sci. U.S.A. 87(3), 1990
PMID: 2105499
Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant.
Krol M, Spangfort MD, Huner NP, Oquist G, Gustafsson P, Jansson S., Plant Physiol. 107(3), 1995
PMID: 7748263
Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies.
Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B., Photochem. Photobiol. Sci. 4(12), 2005
PMID: 16307108
Chlorophyll fluorescence--a practical guide.
Maxwell K, Johnson GN., J. Exp. Bot. 51(345), 2000
PMID: 10938857
Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression.
McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K., Plant Physiol. 139(2), 2005
PMID: 16183832

Non-photochemical quenching. A response to excess light energy.
Muller P, Li XP, Niyogi KK., Plant Physiol. 125(4), 2001
PMID: 11299337
NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii.
Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A, Kahmann U, Kapazoglou A, Mullineaux CW, Hippler M, Nickelsen J, Nixon PJ, Kruse O., Plant Cell 17(12), 2005
PMID: 16284312


Valuable products from biotechnology of microalgae.
Pulz O, Gross W., Appl. Microbiol. Biotechnol. 65(6), 2004
PMID: 15300417
Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas.
Rohr J, Sarkar N, Balenger S, Jeong BR, Cerutti H., Plant J. 40(4), 2004
PMID: 15500475
Perspectives and advances of biological H2 production in microorganisms.
Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O., Appl. Microbiol. Biotechnol. 72(3), 2006
PMID: 16896600

Sambrook, 1989
RNA silencing in Chlamydomonas: mechanisms and tools.
Schroda M., Curr. Genet. 49(2), 2005
PMID: 16308700

Tanaka, Proc. Natl. Acad. Sci. USA 95(), 1998
CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii.
Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV, Villarejo A., Proteomics 6(9), 2006
PMID: 16572472
Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii.
Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, Vener AV., Mol. Cell Proteomics 5(8), 2006
PMID: 16670252


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 17764518
PubMed | Europe PMC

Suchen in

Google Scholar