Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils

Grund T, Teuchert-Noodt G, Busche A, Neddens J, Brurnmelte S, Moll GH, Dawirs RR (2007)
BRAIN RESEARCH 1176: 124-132.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Grund, Thorsten; Teuchert-Noodt, GertraudUniBi; Busche, Andrea; Neddens, Joerg; Brurnmelte, Susanne; Moll, Gunther H.; Dawirs, Ralph R.
Abstract / Bemerkung
The enduring effects of postweaning subchronic methylphenidate (MP) treatment and/or previous early preweaning methamphetamine (MA) application on dopamine (DA) fiber density were investigated in multiple cortical and subcortical areas of the gerbil brain. The study aimed to explore three questions: (1) is the development of DA fiber innervation in control animals sensitive to a clinically relevant subchronic treatment with MP? (2) Is the development of DA fiber innervation in the forebrain altered by a single early MA challenge? (3) if so, might the subsequent institution of a therapeutically relevant MP application scheme interfere with such early induced alternative developmental trajectories for DA fiber innervation? For this purpose, gerbils pretreated both with saline and MA (50 mg/kg, i. p.) on day 14 received either H2O or MP (5 mg/kg) orally on days 30 to 60. On day 90, DA fibers were immunohistochemically detected and quantified. As a result, MP on its own did not have any significant influence on the postnatal development of the DA fiber systems, whereas it prevented a previously MA triggered suppressive development of DA fiber innervation in the prefrontal cortex and amygdala complex (30% less fiber innervation in both areas). Thus, MP prevented previously initiated miswiring of DA fibers from actually being implemented in the gerbil forebrain. During earlier studies, rather complex miswiring has been documented in response to an early preweaning MA challenge. This miswiring was associated with functional deficits resembling some of the symptoms of patients with ADHD. Therefore, morphogenetic properties of MP need further attention. (C) 2007 Elsevier B.V. All rights reserved.
Stichworte
attention deficit hyperactivity; disorder; ADHD; methamphetamine; Ritalin (R); dopamine
Erscheinungsjahr
2007
Zeitschriftentitel
BRAIN RESEARCH
Band
1176
Seite(n)
124-132
ISSN
0006-8993
Page URI
https://pub.uni-bielefeld.de/record/1631295

Zitieren

Grund T, Teuchert-Noodt G, Busche A, et al. Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils. BRAIN RESEARCH. 2007;1176:124-132.
Grund, T., Teuchert-Noodt, G., Busche, A., Neddens, J., Brurnmelte, S., Moll, G. H., & Dawirs, R. R. (2007). Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils. BRAIN RESEARCH, 1176, 124-132. https://doi.org/10.1016/j.brainres.2007.06.107
Grund, Thorsten, Teuchert-Noodt, Gertraud, Busche, Andrea, Neddens, Joerg, Brurnmelte, Susanne, Moll, Gunther H., and Dawirs, Ralph R. 2007. “Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils”. BRAIN RESEARCH 1176: 124-132.
Grund, T., Teuchert-Noodt, G., Busche, A., Neddens, J., Brurnmelte, S., Moll, G. H., and Dawirs, R. R. (2007). Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils. BRAIN RESEARCH 1176, 124-132.
Grund, T., et al., 2007. Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils. BRAIN RESEARCH, 1176, p 124-132.
T. Grund, et al., “Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils”, BRAIN RESEARCH, vol. 1176, 2007, pp. 124-132.
Grund, T., Teuchert-Noodt, G., Busche, A., Neddens, J., Brurnmelte, S., Moll, G.H., Dawirs, R.R.: Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils. BRAIN RESEARCH. 1176, 124-132 (2007).
Grund, Thorsten, Teuchert-Noodt, Gertraud, Busche, Andrea, Neddens, Joerg, Brurnmelte, Susanne, Moll, Gunther H., and Dawirs, Ralph R. “Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils”. BRAIN RESEARCH 1176 (2007): 124-132.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sex differences, learning flexibility, and striatal dopamine D1 and D2 following adolescent drug exposure in rats.
Izquierdo A, Pozos H, Torre Ade L, DeShields S, Cevallos J, Rodriguez J, Stolyarova A., Behav Brain Res 308(), 2016
PMID: 27091300
Long-term oral methylphenidate treatment in adolescent and adult rats: differential effects on brain morphology and function.
van der Marel K, Klomp A, Meerhoff GF, Schipper P, Lucassen PJ, Homberg JR, Dijkhuizen RM, Reneman L., Neuropsychopharmacology 39(2), 2014
PMID: 23851400
Effects of adolescent social defeat on adult amphetamine-induced locomotion and corticoaccumbal dopamine release in male rats.
Burke AR, Forster GL, Novick AM, Roberts CL, Watt MJ., Neuropharmacology 67(), 2013
PMID: 23220295
Developmental chlorpyrifos and methyl parathion exposure alters radial-arm maze performance in juvenile and adult rats.
Johnson FO, Chambers JE, Nail CA, Givaruangsawat S, Carr RL., Toxicol Sci 109(1), 2009
PMID: 19293373
Effect of postnatal methamphetamine trauma and adolescent methylphenidate treatment on adult hippocampal neurogenesis in gerbils.
Schaefers AT, Teuchert-Noodt G, Bagorda F, Brummelte S., Eur J Pharmacol 616(1-3), 2009
PMID: 19540225

65 References

Daten bereitgestellt von Europe PubMed Central.

Stimulants and the developing brain.
Andersen SL., Trends Pharmacol. Sci. 26(5), 2005
PMID: 15860370
The effects of haloperidol on synaptic patterns in the rat striatum.
Benes FM, Paskevich PA, Davidson J, Domesick VB., Brain Res. 329(1-2), 1985
PMID: 3978446
Pathologies of brain attentional networks.
Berger A, Posner MI., Neurosci Biobehav Rev 24(1), 2000
PMID: 10654653
Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood.
Bolanos CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ., Biol. Psychiatry 54(12), 2003
PMID: 14675795
Alteration in the GABAergic network of the prefrontal cortex in a potential animal model of psychosis.
Brummelte S, Neddens J, Teuchert-Noodt G., J Neural Transm (Vienna) 114(5), 2007
PMID: 17195918
Enduring behavioral effects of early exposure to methylphenidate in rats.
Carlezon WA Jr, Mague SD, Andersen SL., Biol. Psychiatry 54(12), 2003
PMID: 14675796
Methylphenidate: its pharmacology and uses.
Challman TD, Lipsky JJ., Mayo Clin. Proc. 75(7), 2000
PMID: 10907387
Effects of early methylphenidate exposure on morphine- and sucrose-reinforced behaviors in adult rats: relationship to dopamine D2 receptors.
Crawford CA, Villafranca SW, Cyr MC, Farley CM, Reichel CM, Gheorghe SL, Krall CM, McDougall SA., Brain Res. 1139(), 2007
PMID: 17274963
Brain kinetics of methylphenidate (Ritalin) enantiomers after oral administration.
Ding YS, Gatley SJ, Thanos PK, Shea C, Garza V, Xu Y, Carter P, King P, Warner D, Taintor NB, Park DJ, Pyatt B, Fowler JS, Volkow ND., Synapse 53(3), 2004
PMID: 15236349
Neural substrates of decision making in adults with attention deficit hyperactivity disorder.
Ernst M, Kimes AS, London ED, Matochik JA, Eldreth D, Tata S, Contoreggi C, Leff M, Bolla K., Am J Psychiatry 160(6), 2003
PMID: 12777263
Actions of methylphenidate on dopaminergic neurons of the ventral midbrain.
Federici M, Geracitano R, Bernardi G, Mercuri NB., Biol. Psychiatry 57(4), 2005
PMID: 15705351
The prefrontal cortex and its relation to behavior.
Fuster JM., Prog. Brain Res. 87(), 1991
PMID: 1907745
Comparison between intraperitoneal and oral methylphenidate administration: A microdialysis and locomotor activity study.
Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL., J. Pharmacol. Exp. Ther. 295(1), 2000
PMID: 10991960
Methylphenidate-induced plasticity: what should we be looking for?
Hyman SE., Biol. Psychiatry 54(12), 2003
PMID: 14675793
Findings from the NIMH Multimodal Treatment Study of ADHD (MTA): implications and applications for primary care providers.
Jensen PS, Hinshaw SP, Swanson JM, Greenhill LL, Conners CK, Arnold LE, Abikoff HB, Elliott G, Hechtman L, Hoza B, March JS, Newcorn JH, Severe JB, Vitiello B, Wells K, Wigal T., J Dev Behav Pediatr 22(1), 2001
PMID: 11265923
The neuroscience of natural rewards: relevance to addictive drugs.
Kelley AE, Berridge KC., J. Neurosci. 22(9), 2002
PMID: 11978804
Attention-deficit/hyperactivity disorder: a therapeutic update.
Kirby K, Rutman LE, Bernstein H., Curr. Opin. Pediatr. 14(2), 2002
PMID: 11981298
Serotonin fibre densities in subcortical areas: differential effects of isolated rearing and methamphetamine.
Lehmann K, Lesting J, Polascheck D, Teuchert-Noodt G., Brain Res. Dev. Brain Res. 147(1-2), 2003
PMID: 14741759
The acetylcholine fiber density of the neocortex is altered by isolated rearing and early methamphetamine intoxication in rodents.
Lehmann K, Hundsdorfer B, Hartmann T, Teuchert-Noodt G., Exp. Neurol. 189(1), 2004
PMID: 15296843
Arousal systems.
Marrocco RT, Witte EA, Davidson MC., Curr. Opin. Neurobiol. 4(2), 1994
PMID: 7913640
Attention deficit/hyperactivity disorders.
Miller KJ, Castellanos FX., Pediatr Rev 19(11), 1998
PMID: 9805463
From motivation to action: functional interface between the limbic system and the motor system.
Mogenson GJ, Jones DL, Yim CY., Prog. Neurobiol. 14(2-3), 1980
PMID: 6999537
Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters.
Moll GH, Hause S, Ruther E, Rothenberger A, Huether G., J Child Adolesc Psychopharmacol 11(1), 2001
PMID: 11322741
Postnatal maturation of cortical serotonin lateral asymmetry in gerbils is vulnerable to both environmental and pharmacological epigenetic challenges.
Neddens J, Dawirs RR, Bagorda F, Busche A, Horstmann S, Teuchert-Noodt G., Brain Res. 1021(2), 2004
PMID: 15342268
A single dose of methamphetamine in neonatal gerbils affects adult prefrontal gamma-aminobutyric acid innervation.
Nossoll M, Teuchert-Noodt G, Dawirs RR., Eur. J. Pharmacol. 340(2-3), 1997
PMID: 9537803
The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles.
Oades RD, Sadile AG, Sagvolden T, Viggiano D, Zuddas A, Devoto P, Aase H, Johansen EB, Ruocco LA, Russell VA., Dev Sci 8(2), 2005
PMID: 15720370

Paxinos, 1986
Connectivity of the rat amygdaloid complex
Pitkanen, 2000
Attentional networks.
Posner MI, Dehaene S., Trends Neurosci. 17(2), 1994
PMID: 7512772
Neurobehavioural mechanisms of reward and motivation.
Robbins TW, Everitt BJ., Curr. Opin. Neurobiol. 6(2), 1996
PMID: 8725965
Cocaine decreases cell survival and inhibits neurite extension of rat locus coeruleus neurons.
Snow DM, Smith JD, Booze RM, Welch MA, Mactutus CF., Neurotoxicol Teratol 23(3), 2001
PMID: 11418264
Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder.
Sowell ER, Thompson PM, Welcome SE, Henkenius AL, Toga AW, Peterson BS., Lancet 362(9397), 2003
PMID: 14643117
Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle.
Spencer T, Biederman J, Wilens T, Harding M, O'Donnell D, Griffin S., J Am Acad Child Adolesc Psychiatry 35(4), 1996
PMID: 8919704
Enantioselective pharmacokinetics of dl-threo-methylphenidate in humans.
Srinivas NR, Hubbard JW, Korchinski ED, Midha KK., Pharm. Res. 10(1), 1993
PMID: 8430051
Globalisation of international health.
Walt G., Lancet 351(9100), 1998
PMID: 9482320

Valverde, 1998
What are the long-term effects of methylphenidate treatment?
Volkow ND, Insel TR., Biol. Psychiatry 54(12), 2003
PMID: 14675792
Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate.
Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Hitzemann R, Pappas N., Am J Psychiatry 155(10), 1998
PMID: 9766762
Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain.
Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D., J. Neurosci. 21(2), 2001
PMID: 11160455
Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life.
Wegerer V, Moll GH, Bagli M, Rothenberger A, Ruther E, Huether G., J Child Adolesc Psychopharmacol 9(1), 1999
PMID: 10357514
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17900540
PubMed | Europe PMC

Suchen in

Google Scholar