Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome(1[W])

Baier MC, Barsch A, Kuester H, Hohnjec N (2007)
PLANT PHYSIOLOGY 145(4): 1600-1618.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Baier, Markus C.; Barsch, Aiko; Kuester, Helge; Hohnjec, Natalija
Abstract / Bemerkung
We analyzed the role of the sucrose (Suc) synthase MtSucS1 during nodulation of the model legume Medicago truncatula, integrating data for the developmental, transcriptional, and metabolic processes affected downstream of an impaired Suc cleavage in root nodules. To reduce carbohydrate supply to nodule tissues, transgenic plants expressing a p35S-driven MtSucS1antisense fusion were constructed. These plants displayed an up to 90% reduction of MtSucS1 proteins in roots and nodules. Phenotypic studies of two independent MtSucS1-reduced lines demonstrated that only under conditions depending on nodulation, these plants appeared to be impaired in above-ground growth. Specifically plant height, shoot weight, leaf development, flowering, as well as seed maturation were reduced, and the efficiency of photosynthesis was affected. Concomitantly, a significantly enhanced root to shoot ratio with a marked increase in root tip numbers was observed. Root nodule formation was found retarded and the impaired nodulation was accompanied by a less efficient nitrogen (N) acquisition. The decreased total N content of MtSucS1-antisense lines and an enhanced carbon to N ratio in roots, nodules, and shoots correlated with the extent of MtSucS1 knockdown. Onthe level of transcription, effects of an MtSucS1 reduction were evident for genes representing important nodes of the nodule carbon and N metabolism, while metabolite profiling revealed significantly lower levels of amino acids and their derivatives particularly in strongly MtSucS1-reduced nodules. Our results support the model that nodule-enhanced Suc synthase 1 of the model legume M. truncatula is required for the establishment and maintenance of an efficient N-fixing symbiosis.
Page URI


Baier MC, Barsch A, Kuester H, Hohnjec N. Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome(1[W]). PLANT PHYSIOLOGY. 2007;145(4):1600-1618.
Baier, M. C., Barsch, A., Kuester, H., & Hohnjec, N. (2007). Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome(1[W]). PLANT PHYSIOLOGY, 145(4), 1600-1618.
Baier, M. C., Barsch, A., Kuester, H., and Hohnjec, N. (2007). Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome(1[W]). PLANT PHYSIOLOGY 145, 1600-1618.
Baier, M.C., et al., 2007. Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome(1[W]). PLANT PHYSIOLOGY, 145(4), p 1600-1618.
M.C. Baier, et al., “Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome(1[W])”, PLANT PHYSIOLOGY, vol. 145, 2007, pp. 1600-1618.
Baier, M.C., Barsch, A., Kuester, H., Hohnjec, N.: Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome(1[W]). PLANT PHYSIOLOGY. 145, 1600-1618 (2007).
Baier, Markus C., Barsch, Aiko, Kuester, Helge, and Hohnjec, Natalija. “Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome(1[W])”. PLANT PHYSIOLOGY 145.4 (2007): 1600-1618.

44 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere.
Hennion N, Durand M, Vriet C, Doidy J, Maurousset L, Lemoine R, Pourtau N., Physiol Plant 165(1), 2019
PMID: 29704246
Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains.
Yamaya-Ito H, Shimoda Y, Hakoyama T, Sato S, Kaneko T, Hossain MS, Shibata S, Kawaguchi M, Hayashi M, Kouchi H, Umehara Y., Plant J 93(1), 2018
PMID: 29086445
Molecular Characterization of LjSWEET3, a Sugar Transporter in Nodules of Lotus japonicus.
Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB, Yazaki K., Plant Cell Physiol 58(2), 2017
PMID: 28007966
MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula.
Kryvoruchko IS, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu CI, Guan D, Murray J, Benedito VA, Frommer WB, Udvardi MK., Plant Physiol 171(1), 2016
PMID: 27021190
Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height.
Wei Z, Qu Z, Zhang L, Zhao S, Bi Z, Ji X, Wang X, Wei H., PLoS One 10(3), 2015
PMID: 25807295
Transgenic alfalfa (Medicago sativa) with increased sucrose phosphate synthase activity shows enhanced growth when grown under N2-fixing conditions.
Gebril S, Seger M, Villanueva FM, Ortega JL, Bagga S, Sengupta-Gopalan C., Planta 242(4), 2015
PMID: 26055333
Sucrose metabolism gene families and their biological functions.
Jiang SY, Chi YH, Wang JZ, Zhou JX, Cheng YS, Zhang BL, Ma A, Vanitha J, Ramachandran S., Sci Rep 5(), 2015
PMID: 26616172
Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions.
Esfahani MN, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS., Plant Biotechnol J 12(3), 2014
PMID: 24267445
An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula.
Cabeza R, Koester B, Liese R, Lingner A, Baumgarten V, Dirks J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J., Plant Physiol 164(1), 2014
PMID: 24285852
High specificity in plant leaf metabolic responses to arbuscular mycorrhiza.
Schweiger R, Baier MC, Persicke M, Müller C., Nat Commun 5(), 2014
PMID: 24848943
The role of the cell wall compartment in mutualistic symbioses of plants.
Rich MK, Schorderet M, Reinhardt D., Front Plant Sci 5(), 2014
PMID: 24917869
Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.
Nasr Esfahani M, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS., Plant J 79(6), 2014
PMID: 24947137
RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N₂ fixation before emerging P deficiency reaches the nodules.
Cabeza RA, Liese R, Lingner A, von Stieglitz I, Neumann J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J., J Exp Bot 65(20), 2014
PMID: 25151618
Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis.
Larrainzar E, Gil-Quintana E, Seminario A, Arrese-Igor C, González EM., Front Microbiol 5(), 2014
PMID: 25221545
The root hair "infectome" of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for Auxin signaling in rhizobial infection.
Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GE, Downie JA, Murray JD., Plant Cell 26(12), 2014
PMID: 25527707
Transport and metabolism in legume-rhizobia symbioses.
Udvardi M, Poole PS., Annu Rev Plant Biol 64(), 2013
PMID: 23451778
Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.
Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E., New Phytol 199(1), 2013
PMID: 23638913
Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula.
Moreau D, Burstin J, Aubert G, Huguet T, Ben C, Prosperi JM, Salon C, Munier-Jolain N., Theor Appl Genet 124(4), 2012
PMID: 22113590
Enhanced expression of Rhizobium etli cbb₃ oxidase improves drought tolerance of common bean symbiotic nitrogen fixation.
Talbi C, Sánchez C, Hidalgo-Garcia A, González EM, Arrese-Igor C, Girard L, Bedmar EJ, Delgado MJ., J Exp Bot 63(14), 2012
PMID: 22511804
A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning.
Marino D, Andrio E, Danchin EG, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N., New Phytol 189(2), 2011
PMID: 21155825
Peptide signalling in the rhizobium-legume symbiosis.
Batut J, Mergaert P, Masson-Boivin C., Curr Opin Microbiol 14(2), 2011
PMID: 21236724
Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules.
El Msehli S, Lambert A, Baldacci-Cresp F, Hopkins J, Boncompagni E, Smiti SA, Hérouart D, Frendo P., New Phytol 192(2), 2011
PMID: 21726232
The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications.
Zheng Y, Anderson S, Zhang Y, Garavito RM., J Biol Chem 286(41), 2011
PMID: 21865170
Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.).
Aleman L, Ortega JL, Martinez-Grimes M, Seger M, Holguin FO, Uribe DJ, Garcia-Ibilcieta D, Sengupta-Gopalan C., Planta 231(2), 2010
PMID: 19898977
Elevated CO2 concentration around alfalfa nodules increases N2 fixation.
Fischinger SA, Hristozkova M, Mainassara ZA, Schulze J., J Exp Bot 61(1), 2010
PMID: 19815686
How many peas in a pod? Legume genes responsible for mutualistic symbioses underground.
Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M., Plant Cell Physiol 51(9), 2010
PMID: 20660226
Redox changes during the legume-rhizobium symbiosis.
Chang C, Damiani I, Puppo A, Frendo P., Mol Plant 2(3), 2009
PMID: 19825622
Translating Medicago truncatula genomics to crop legumes.
Young ND, Udvardi M., Curr Opin Plant Biol 12(2), 2009
PMID: 19162532
TRUNCATULIX--a data warehouse for the legume community.
Henckel K, Runte KJ, Bekel T, Dondrup M, Jakobi T, Küster H, Goesmann A., BMC Plant Biol 9(), 2009
PMID: 19210766
A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus.
Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang TL., J Exp Bot 60(12), 2009
PMID: 19474088
Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state.
Marino D, Hohnjec N, Küster H, Moran JF, González EM, Arrese-Igor C., Mol Plant Microbe Interact 21(5), 2008
PMID: 18393622
Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions.
Ferrarini A, De Stefano M, Baudouin E, Pucciariello C, Polverari A, Puppo A, Delledonne M., Mol Plant Microbe Interact 21(6), 2008
PMID: 18624641

60 References

Daten bereitgestellt von Europe PubMed Central.

Identification of sucrose synthase as an actin-binding protein.
Winter H, Huber JL, Huber SC, Davies E., FEBS Lett. 430(3), 1998
PMID: 9688539
The sucrose synthase gene is predominantly expressed in the root nodule tissue of Vicia faba.
Kuster H, Fruhling M, Perlick AM, Puhler A., Mol. Plant Microbe Interact. 6(4), 1993
PMID: 8400379
Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea.
Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc G., Plant Physiol. 144(2), 2007
PMID: 17449650
Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations.
Barsch A, Tellstrom V, Patschkowski T, Kuster H, Niehaus K., Mol. Plant Microbe Interact. 19(9), 2006
PMID: 16941904
Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses.
Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H., Mol. Plant Microbe Interact. 17(10), 2004
PMID: 15497399
A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants.
Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP., Proc. Natl. Acad. Sci. U.S.A. 92(20), 1995
PMID: 7568131
Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium.
Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ., Plant J. 22(6), 2000
PMID: 10886773
Genetic mapping of Rhizobium meliloti.
Meade HM, Signer ER., Proc. Natl. Acad. Sci. U.S.A. 74(5), 1977
PMID: 266730
Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program.
El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P., Plant Physiol. 136(2), 2004
PMID: 15466239
2S Arginine-rich proteins from Pinus pinaster seeds.
Allona I, Collada C, Casado R, Aragoncillo C., Tree Physiol. 14(2), 1994
PMID: 14967715
The presence of GSI-like genes in higher plants: support for the paralogous evolution of GSI and GSII genes.
Mathis R, Gamas P, Meyer Y, Cullimore JV., J. Mol. Evol. 50(2), 2000
PMID: 10684345
Net primary production of forests: a constant fraction of gross primary production?
Waring RH, Landsberg JJ, Williams M., Tree Physiol. 18(2), 1998
PMID: 12651397
Evidence for plasma membrane-associated forms of sucrose synthase in maize.
Carlson SJ, Chourey PS., Mol. Gen. Genet. 252(3), 1996
PMID: 8842150
Isolation and sequences of rice sucrose synthase cDNA and genomic DNA.
Yu WP, Wang AY, Juang RH, Sung HY, Su JC., Plant Mol. Biol. 18(1), 1992
PMID: 1531032
Udvardi MK, Day DA., Annu. Rev. Plant Physiol. Plant Mol. Biol. 48(), 1997
PMID: 15012272
NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription.
Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R., Science 308(5729), 2005
PMID: 15961669
Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays.
Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, Udvardi MK., Mol. Plant Microbe Interact. 15(5), 2002
PMID: 12036271
Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells.
Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386369
Differential metabolic networks unravel the effects of silent plant phenotypes.
Weckwerth W, Loureiro ME, Wenzel K, Fiehn O., Proc. Natl. Acad. Sci. U.S.A. 101(20), 2004
PMID: 15136733
A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development.
Coba de la Pena T, Frugier F, McKhann HI, Bauer P, Brown S, Kondorosi A, Crespi M., Plant J. 11(3), 1997
PMID: 9107031
Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes.
Koch KE, Nolte KD, Duke ER, McCarty DR, Avigne WT., Plant Cell 4(1), 1992
PMID: 12297629
Products of Dark CO(2) Fixation in Pea Root Nodules Support Bacteroid Metabolism.
Rosendahl L, Vance CP, Pedersen WB., Plant Physiol. 93(1), 1990
PMID: 16667422
Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, Gonzalez EM., Plant Physiol. 144(3), 2007
PMID: 17545507
Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.
Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS., Nature 422(6933), 2003
PMID: 12700763
Physiological Signals That Induce Flowering.
Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P., Plant Cell 5(10), 1993
PMID: 12271018
Analysis of the sucrose synthase gene family in Arabidopsis.
Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM., Plant J. 49(5), 2007
PMID: 17257168
Sucrose synthase localizes to cellulose synthesis sites in tracheary elements.
Salnikov VV, Grimson MJ, Delmer DP, Haigler CH., Phytochemistry 57(6), 2001
PMID: 11423134
Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase.
Flemetakis E, Efrose RC, Ott T, Stedel C, Aivalakis G, Udvardi MK, Katinakis P., Plant Mol. Biol. 62(1-2), 2006
PMID: 16897473
Sucrose synthase in legume nodules is essential for nitrogen fixation
Gordon AJ, Minchin FR, James CL, Komina O., Plant Physiol. 120(3), 1999
PMID: 10398723
Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.
Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P., Nucleic Acids Res. 30(24), 2002
PMID: 12490726
GMD@CSB.DB: the Golm Metabolome Database.
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D., Bioinformatics 21(8), 2004
PMID: 15613389
TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase.
Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL., Plant Physiol. 144(2), 2007
PMID: 17468221
Legume embryos develop in a hypoxic environment.
Rolletschek H, Borisjuk L, Koschorreck M, Wobus U, Weber H., J. Exp. Bot. 53(371), 2002
PMID: 11971921
Insights into symbiotic nitrogen fixation in Medicago truncatula.
Tesfaye M, Samac DA, Vance CP., Mol. Plant Microbe Interact. 19(3), 2006
PMID: 16570662
Multiple, distinct isoforms of sucrose synthase in pea.
Barratt DH, Barber L, Kruger NJ, Smith AM, Wang TL, Martin C., Plant Physiol. 127(2), 2001
PMID: 11598239
Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes.
Winter H, Huber SC, Brown CS., Crit. Rev. Biochem. Mol. Biol. 35(4), 2000
PMID: 11005202


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 17951459
PubMed | Europe PMC

Suchen in

Google Scholar