Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation

Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D (2007)
The Plant Journal 52(6): 1119-1130.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Schöning, Jan C.; Streitner, CorinnaUniBi; Page, Damian R.; Hennig, Sven; Uchida, Kenko; Wolf, Eva; Furuya, Masaki; Staiger, DorotheeUniBi
Abstract / Bemerkung
The clock-regulated RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences circadian oscillations of its transcript by negative feedback at the post-transcriptional level. Here we show that site-specific mutation of one conserved arginine to glutamine within the RNA recognition motif impairs binding of recombinant AtGRP7 to its pre-mRNA in vitro. This correlates with the loss of the negative auto-regulation in vivo: in transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox), a shift occurs to an alternatively spliced AtGRP7 transcript that decays rapidly, and thus does not accumulate to high levels. In contrast, constitutive ectopic overexpression of the AtGRP7-RQ mutant does not lead to alternative splicing of the endogenous AtGRP7 transcript and concomitant damping of the oscillations. This highlights the importance of AtGRP7 binding to its own transcript for the negative auto-regulatory circuit. Moreover, regulation of AtGRP7 downstream targets also depends on its RNA-binding activity, as AtGRP8 and other targets identified by transcript profiling of wild-type and AtGRP7-ox plants using fluorescent differential display are negatively affected by AtGRP7 but not by AtGRP7-RQ. In mutants impaired in the nonsense-mediated decay (NMD) components UPF1 or UPF3, levels of the alternatively spliced AtGRP7 and AtGRP8 transcripts that contain premature termination codons are strongly elevated, implicating UPF1 and UPF3 in the decay of these clock-regulated transcripts.
UPF3; circadian clock; Arabidopsis; post-transcriptional regulation; RNA recognition motif; UPF1
The Plant Journal
Page URI


Schöning JC, Streitner C, Page DR, et al. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal. 2007;52(6):1119-1130.
Schöning, J. C., Streitner, C., Page, D. R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., et al. (2007). Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal, 52(6), 1119-1130.
Schöning, Jan C., Streitner, Corinna, Page, Damian R., Hennig, Sven, Uchida, Kenko, Wolf, Eva, Furuya, Masaki, and Staiger, Dorothee. 2007. “Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation”. The Plant Journal 52 (6): 1119-1130.
Schöning, J. C., Streitner, C., Page, D. R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., and Staiger, D. (2007). Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal 52, 1119-1130.
Schöning, J.C., et al., 2007. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal, 52(6), p 1119-1130.
J.C. Schöning, et al., “Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation”, The Plant Journal, vol. 52, 2007, pp. 1119-1130.
Schöning, J.C., Streitner, C., Page, D.R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., Staiger, D.: Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal. 52, 1119-1130 (2007).
Schöning, Jan C., Streitner, Corinna, Page, Damian R., Hennig, Sven, Uchida, Kenko, Wolf, Eva, Furuya, Masaki, and Staiger, Dorothee. “Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation”. The Plant Journal 52.6 (2007): 1119-1130.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

76 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
The Plant Circadian Oscillator.
McClung CR., Biology (Basel) 8(1), 2019
PMID: 30870980
RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A.
Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y., J Exp Bot 68(7), 2017
PMID: 28369599
Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense-mediated decay in plants.
Nyikó T, Auber A, Szabadkai L, Benkovics A, Auth M, Mérai Z, Kerényi Z, Dinnyés A, Nagy F, Silhavy D., Nucleic Acids Res 45(7), 2017
PMID: 28062855
Up-Frameshift Protein UPF1 Regulates Neurospora crassa Circadian and Diurnal Growth Rhythms.
Wu Y, Zhang Y, Sun Y, Yu J, Wang P, Ma H, Chen S, Ma L, Zhang D, He Q, Guo J., Genetics 206(4), 2017
PMID: 28600326
Evolutionarily Conserved Alternative Splicing Across Monocots.
Mei W, Boatwright L, Feng G, Schnable JC, Barbazuk WB., Genetics 207(2), 2017
PMID: 28839042
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.
Wu Z, Zhu D, Lin X, Miao J, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X, Tsuge T, Dean C, Aoyama T, Gu H, Qu LJ., Plant Cell 28(1), 2016
PMID: 26721863
Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis.
Filichkin SA, Cumbie JS, Dharmawardhana P, Jaiswal P, Chang JH, Palusa SG, Reddy AS, Megraw M, Mockler TC., Mol Plant 8(2), 2015
PMID: 25680774
Alternative Splicing in the Obligate Biotrophic Oomycete Pathogen Pseudoperonospora cubensis.
Burkhardt A, Buchanan A, Cumbie JS, Savory EA, Chang JH, Day B., Mol Plant Microbe Interact 28(3), 2015
PMID: 25372122
Circadian rhythms and post-transcriptional regulation in higher plants.
Romanowski A, Yanovsky MJ., Front Plant Sci 6(), 2015
PMID: 26124767
Unique Aspects of Plant Nonsense-Mediated mRNA Decay.
Shaul O., Trends Plant Sci 20(11), 2015
PMID: 26442679
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D., Plant Cell Environ 37(3), 2014
PMID: 23961939
Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits
Müller GL, Triassi A, Alvarez CE, Falcone Ferreyra ML, Andreo CS, Lara MV, Drincovich MF., Funct Plant Biol 41(4), 2014
PMID: IND500739485
Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function.
Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H., Nucleic Acids Res 42(13), 2014
PMID: 24957607
Novel bacterial ADP-ribosylating toxins: structure and function.
Simon NC, Aktories K, Barbieri JT., Nat Rev Microbiol 12(9), 2014
PMID: 25023120
HnRNP-like proteins as post-transcriptional regulators.
Yeap WC, Namasivayam P, Ho CL., Plant Sci 227(), 2014
PMID: 25219311
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res 42(15), 2014
PMID: 25104024
Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy.
Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schüttpelz M, Staiger D., Biochem Biophys Res Commun 453(1), 2014
PMID: 25251471
Emerging role for RNA-based regulation in plant immunity.
Staiger D, Korneli C, Lummer M, Navarro L., New Phytol 197(2), 2013
PMID: 23163405
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7.
Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C., EMBO J 32(5), 2013
PMID: 23395902
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
Ribonucleoprotein complexes that control circadian clocks.
Wang D, Liang X, Chen X, Guo J., Int J Mol Sci 14(5), 2013
PMID: 23698761
Translational Regulation of Cytoplasmic mRNAs.
Roy B, von Arnim AG., Arabidopsis Book 11(), 2013
PMID: 23908601
On the front line: structural insights into plant-pathogen interactions.
Wirthmueller L, Maqbool A, Banfield MJ., Nat Rev Microbiol 11(11), 2013
PMID: 24100360
Complexity of the alternative splicing landscape in plants.
Reddy AS, Marquez Y, Kalyna M, Barta A., Plant Cell 25(10), 2013
PMID: 24179125
Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis.
Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JW., Nucleic Acids Res 40(6), 2012
PMID: 22127866
Deep sequencing the circadian and diurnal transcriptome of Drosophila brain.
Hughes ME, Grant GR, Paquin C, Qian J, Nitabach MN., Genome Res 22(7), 2012
PMID: 22472103
EgRBP42 encoding an hnRNP-like RNA-binding protein from Elaeis guineensis Jacq. is responsive to abiotic stresses.
Yeap WC, Ooi TE, Namasivayam P, Kulaveerasingam H, Ho CL., Plant Cell Rep 31(10), 2012
PMID: 22699852
Regulation of alternative splicing by the circadian clock and food related cues.
McGlincy NJ, Valomon A, Chesham JE, Maywood ES, Hastings MH, Ule J., Genome Biol 13(6), 2012
PMID: 22721557
Alternative splicing in plants--coming of age.
Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW., Trends Plant Sci 17(10), 2012
PMID: 22743067
mADP-RTs: versatile virulence factors from bacterial pathogens of plants and mammals.
Wirthmueller L, Banfield MJ., Front Plant Sci 3(), 2012
PMID: 22754560
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res 40(22), 2012
PMID: 23042250
Spotlight on post-transcriptional control in the circadian system.
Staiger D, Köster T., Cell Mol Life Sci 68(1), 2011
PMID: 20803230
Processing bodies and plant development.
Xu J, Chua NH., Curr Opin Plant Biol 14(1), 2011
PMID: 21075046
Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms.
Zhang L, Weng W, Guo J., FEBS Lett 585(10), 2011
PMID: 21414314
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schüttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae.
Rund SS, Hou TY, Ward SM, Collins FH, Duffield GE., Proc Natl Acad Sci U S A 108(32), 2011
PMID: 21715657
A reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is modulated by phytochrome signals in Arabidopsis.
Kolmos E, Herrero E, Bujdoso N, Millar AJ, Tóth R, Gyula P, Nagy F, Davis SJ., Plant Cell 23(9), 2011
PMID: 21908721
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y., J Biol Chem 286(50), 2011
PMID: 22013065
Alternative splicing at the right time.
Sanchez SE, Petrillo E, Kornblihtt AR, Yanovsky MJ., RNA Biol 8(6), 2011
PMID: 21941124
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol Biol Rep 37(2), 2010
PMID: 19672695
Genome-wide mapping of alternative splicing in Arabidopsis thaliana.
Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC., Genome Res 20(1), 2010
PMID: 19858364
Functional diversity of the plant glycine-rich proteins superfamily.
Mangeon A, Junqueira RM, Sachetto-Martins G., Plant Signal Behav 5(2), 2010
PMID: 20009520
Post-transcriptional controls - adding a new layer of regulation to clock gene expression.
Cibois M, Gautier-Courteille C, Legagneux V, Paillard L., Trends Cell Biol 20(9), 2010
PMID: 20630760
Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth.
Wang F, Bai MY, Deng Z, Oses-Prieto JA, Burlingame AL, Lu T, Chong K, Wang ZY., J Integr Plant Biol 52(12), 2010
PMID: 21106006
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol 10(), 2010
PMID: 20946635
A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis.
Qi Y, Tsuda K, Joe A, Sato M, Nguyen le V, Glazebrook J, Alfano JR, Cohen JD, Katagiri F., Mol Plant Microbe Interact 23(12), 2010
PMID: 20636102
Kill the messenger: mRNA decay and plant development.
Belostotsky DA, Sieburth LE., Curr Opin Plant Biol 12(1), 2009
PMID: 18990607
Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics.
Zhu M, Dai S, McClung S, Yan X, Chen S., Mol Cell Proteomics 8(4), 2009
PMID: 19106087
Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA.
Fu Y, Bannach O, Chen H, Teune JH, Schmitz A, Steger G, Xiong L, Barbazuk WB., Genome Res 19(5), 2009
PMID: 19211543
Quantitative analysis of single-molecule RNA-protein interaction.
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R., Biophys J 96(12), 2009
PMID: 19527663
Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus.
Kim SH, Koroleva OA, Lewandowska D, Pendle AF, Clark GP, Simpson CG, Shaw PJ, Brown JW., Plant Cell 21(7), 2009
PMID: 19602621
Characterization of wound-responsive RNA-binding proteins and their splice variants in Arabidopsis.
Bove J, Kim CY, Gibson CA, Assmann SM., Plant Mol Biol 67(1-2), 2008
PMID: 18278441
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D., Plant J 56(2), 2008
PMID: 18573194
Comes a time.
McClung CR., Curr Opin Plant Biol 11(5), 2008
PMID: 18678522

55 References

Daten bereitgestellt von Europe PubMed Central.

Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA., Science 293(5531), 2001
PMID: 11486091
UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis.
Arciga-Reyes L, Wootton L, Kieffer M, Davies B., Plant J. 47(3), 2006
PMID: 16813578
The ins and outs of circadian timekeeping.
Brown SA, Schibler U., Curr. Opin. Genet. Dev. 9(5), 1999
PMID: 10508692
AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis.
Cao S, Jiang L, Song S, Jing R, Xu G., Cell. Mol. Biol. Lett. 11(4), 2006
PMID: 17001447
The nonsense-mediated decay RNA surveillance pathway.
Chang YF, Imam JS, Wilkinson MF., Annu. Rev. Biochem. 76(), 2007
PMID: 17352659
Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR., Plant Physiol. 139(1), 2005
PMID: 16166256
Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA.
Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM., Genes Dev. 13(9), 1999
PMID: 10323862
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.
Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA., Science 309(5734), 2005
PMID: 16040710
Time of day modulates low-temperature Ca signals in Arabidopsis.
Dodd AN, Jakobsen MK, Baker AJ, Telzerow A, Hou SW, Laplaze L, Barrot L, Poethig RS, Haseloff J, Webb AA., Plant J. 48(6), 2006
PMID: 17227550
Cloning and characterization of the acid lipase from castor beans.
Eastmond PJ., J. Biol. Chem. 279(44), 2004
PMID: 15322116
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock.
Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ., Plant Cell 18(3), 2006
PMID: 16473970
EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases.
Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ, Parker JE., Proc. Natl. Acad. Sci. U.S.A. 96(6), 1999
PMID: 10077677
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
The loss of circadian PAR bZip transcription factors results in epilepsy.
Gachon F, Fonjallaz P, Damiola F, Gos P, Kodama T, Zakany J, Duboule D, Petit B, Tafti M, Schibler U., Genes Dev. 18(12), 2004
PMID: 15175240
Circadian rhythms confer a higher level of fitness to Arabidopsis plants.
Green RM, Tingay S, Wang ZY, Tobin EM., Plant Physiol. 129(2), 2002
PMID: 12068102

Hall, 2006
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
UPF3 suppresses aberrant spliced mRNA in Arabidopsis.
Hori K, Watanabe Y., Plant J. 43(4), 2005
PMID: 16098107
A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock.
Iliev D, Voytsekh O, Schmidt EM, Fiedler M, Nykytenko A, Mittag M., Plant Physiol. 142(2), 2006
PMID: 16920878
Molecular characterization of a novel lipase-like pathogen-inducible gene family of Arabidopsis.
Jakab G, Manrique A, Zimmerli L, Metraux JP, Mauch-Mani B., Plant Physiol. 132(4), 2003
PMID: 12913177
Identification of molecular contacts between the U1 A small nuclear ribonucleoprotein and U1 RNA.
Jessen TH, Oubridge C, Teo CH, Pritchard C, Nagai K., EMBO J. 10(11), 1991
PMID: 1833186
Both introns and long 3'-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants.
Kertesz S, Kerenyi Z, Merai Z, Bartos I, Palfy T, Barta E, Silhavy D., Nucleic Acids Res. 34(21), 2006
PMID: 17088291
LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1.
Kojima S, Matsumoto K, Hirose M, Shimada M, Nagano M, Shigeyoshi Y, Hoshino S, Ui-Tei K, Saigo K, Green CB, Sakaki Y, Tei H., Proc. Natl. Acad. Sci. U.S.A. 104(6), 2007
PMID: 17264215
Kinetic analysis of the role of the tyrosine 13, phenylalanine 56 and glutamine 54 network in the U1A/U1 hairpin II interaction.
Law MJ, Chambers EJ, Katsamba PS, Haworth IS, Laird-Offringa IA., Nucleic Acids Res. 33(9), 2005
PMID: 15914668
Chemical shift mapping of the RNA-binding interface of the multiple-RBD protein sex-lethal.
Lee AL, Volkman BF, Robertson SA, Rudner DZ, Barbash DA, Cline TW, Kanaar R, Rio DC, Wemmer DE., Biochemistry 36(47), 1997
PMID: 9398148
Extension of a genetic network model by iterative experimentation and mathematical analysis
Locke, Mol. Syst. Biol. (), 2005
Plant circadian rhythms.
McClung CR., Plant Cell 18(4), 2006
PMID: 16595397
A molecular rhythm mediating circadian clock output in Drosophila.
McNeil GP, Zhang X, Genova G, Jackson FR., Neuron 20(2), 1998
PMID: 9491990
Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs).
Mizuno T, Nakamichi N., Plant Cell Physiol. 46(5), 2005
PMID: 15767264
DIALIGN: multiple DNA and protein sequence alignment at BiBiServ.
Morgenstern B., Nucleic Acids Res. 32(Web Server issue), 2004
PMID: 15215344
Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A.
Nagai K, Oubridge C, Jessen TH, Li J, Evans PR., Nature 348(6301), 1990
PMID: 2147232
Slave to the rhythm
Rudolf, Biochemist 26(), 2004
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function.
Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C., Genes Dev. 17(2), 2003
PMID: 12533513

Staiger, 2006
RNAshapes: an integrated RNA analysis package based on abstract shapes.
Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R., Bioinformatics 22(4), 2005
PMID: 16357029
The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits.
Zhao B, Schneid C, Iliev D, Schmidt EM, Wagner V, Wollnik F, Mittag M., Eukaryotic Cell 3(3), 2004
PMID: 15190002
GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox.
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W., Plant Physiol. 136(1), 2004
PMID: 15375207

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 17924945
PubMed | Europe PMC

Suchen in

Google Scholar