Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography

Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Gölzhäuser A (2007)
Small 3(12): 2114-2119.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Turchanin, AndreyUniBi; Schnietz, MarkUniBi; El-Desawy, Mohamed; Solak, Harun H.; David, Christian; Gölzhäuser, ArminUniBi
Abstract / Bemerkung
Extreme-UV interference lithography (EUV-IL) is applied to create chemical nanopatterns in self-assembled monolayers (SAMs) of 4'-nitro-1,1'-biphenyl-4-thiol (NBPT) on gold. X-ray photoelectron spectroscopy shows that EUV irradiation induces both the conversion of the terminal nitro groups of NBPT into amino gro ups and the lateral crosslinking of the underlying aromatic cores. Large-area (approximate to 2 mm(2)) nitro/amino chemical patterns with periods ranging from 2000 nm to 60 nm can be generated. Regions of pristine NBPT on the exposed samples are exchanged with protein-resistant thiol SAMs of polyethyleneglycol, resulting in the formation of molecular nanotemplates, which can serve as the basis of complex biomimetic surfaces.
Stichworte
chemical nanopatterns; nanolithography; biomimetics; self-assembled monolayers; molecular engineering
Erscheinungsjahr
2007
Zeitschriftentitel
Small
Band
3
Ausgabe
12
Seite(n)
2114-2119
ISSN
1613-6810
eISSN
1613-6829
Page URI
https://pub.uni-bielefeld.de/record/1631011

Zitieren

Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Gölzhäuser A. Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. Small. 2007;3(12):2114-2119.
Turchanin, A., Schnietz, M., El-Desawy, M., Solak, H. H., David, C., & Gölzhäuser, A. (2007). Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. Small, 3(12), 2114-2119. https://doi.org/10.1002/smll.200700516
Turchanin, Andrey, Schnietz, Mark, El-Desawy, Mohamed, Solak, Harun H., David, Christian, and Gölzhäuser, Armin. 2007. “Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography”. Small 3 (12): 2114-2119.
Turchanin, A., Schnietz, M., El-Desawy, M., Solak, H. H., David, C., and Gölzhäuser, A. (2007). Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. Small 3, 2114-2119.
Turchanin, A., et al., 2007. Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. Small, 3(12), p 2114-2119.
A. Turchanin, et al., “Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography”, Small, vol. 3, 2007, pp. 2114-2119.
Turchanin, A., Schnietz, M., El-Desawy, M., Solak, H.H., David, C., Gölzhäuser, A.: Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. Small. 3, 2114-2119 (2007).
Turchanin, Andrey, Schnietz, Mark, El-Desawy, Mohamed, Solak, Harun H., David, Christian, and Gölzhäuser, Armin. “Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography”. Small 3.12 (2007): 2114-2119.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes.
Koch S, Kaiser CD, Penner P, Barclay M, Frommeyer L, Emmrich D, Stohmann P, Abu-Husein T, Terfort A, Fairbrother DH, Ingólfsson O, Gölzhäuser A., Beilstein J Nanotechnol 8(), 2017
PMID: 29259871
Towards an optimum design for thin film phase plates.
Rhinow D., Ultramicroscopy 160(), 2016
PMID: 26397752
Direct Growth of Patterned Graphene.
Weber NE, Wundrack S, Stosch R, Turchanin A., Small 12(11), 2016
PMID: 26765943
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Templating for hierarchical structure control in carbon materials.
Schrettl S, Schulte B, Frauenrath H., Nanoscale 8(45), 2016
PMID: 27827511
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Gölzhäuser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
Low-energy electron induced resonant loss of aromaticity: consequences on cross-linking in terphenylthiol SAMs.
Amiaud L, Houplin J, Bourdier M, Humblot V, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 16(3), 2014
PMID: 24287704
Fabrication of carbon nanomembranes by helium ion beam lithography.
Zhang X, Vieker H, Beyer A, Gölzhäuser A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605285
The height of cell-adhesive nanoposts generated by block copolymer/surfactant complex systems influences the preosteoblast phenotype.
Jeong EJ, Lee JW, Kwark YJ, Kim SH, Lee KY., Colloids Surf B Biointerfaces 123(), 2014
PMID: 25456988
Selective terminal function modification of SAMs driven by low-energy electrons (0-15 eV).
Houplin J, Amiaud L, Humblot V, Martin I, Matar E, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 15(19), 2013
PMID: 23558312
Micrometer and nanometer scale photopatterning of proteins on glass surfaces by photo-degradation of films formed from oligo(ethylene glycol) terminated silanes.
Tizazu G, el Zubir O, Patole S, McLaren A, Vasilev C, Mothersole DJ, Adawi A, Hunter CN, Lidzey DG, Lopez GP, Leggett GJ., Biointerphases 7(1-4), 2012
PMID: 22949077
Nanostructures and functional materials fabricated by interferometric lithography.
Xia D, Ku Z, Lee SC, Brueck SR., Adv Mater 23(2), 2011
PMID: 20976672
Large area nanopatterning of alkylphosphonate self-assembled monolayers on titanium oxide surfaces by interferometric lithography.
Tizazu G, El-Zubir O, Brueck SR, Lidzey DG, Leggett GJ, Lopez GP., Nanoscale 3(6), 2011
PMID: 21431199
The Janus-SAM approach for the flexible functionalization of gold and titanium oxide surfaces.
Bhat R, Sell S, Wagner R, Zhang JT, Pan C, Garipcan B, Boland W, Bossert J, Klemm E, Jandt KD., Small 6(3), 2010
PMID: 19924741
Protein resistant oligo(ethylene glycol) terminated self-assembled monolayers of thiols on gold by vapor deposition in vacuum.
Kankate L, Werner U, Turchanin A, Gölzhäuser A, Grossmann H, Tampé R., Biointerphases 5(2), 2010
PMID: 20831346
Janus nanomembranes: a generic platform for chemistry in two dimensions.
Zheng Z, Nottbohm CT, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M, Gölzhäuser A., Angew Chem Int Ed Engl 49(45), 2010
PMID: 20886488
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Gölzhäuser A., Small 5(23), 2009
PMID: 19787678
Fully cross-linked and chemically patterned self-assembled monolayers.
Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Gölzhäuser A., Phys Chem Chem Phys 10(48), 2008
PMID: 19060967

28 References

Daten bereitgestellt von Europe PubMed Central.

Applications of dip-pen nanolithography.
Salaita K, Wang Y, Mirkin CA., Nat Nanotechnol 2(3), 2007
PMID: 18654244

Lenz, Phys. Rev. Lett. 80(), 1998
Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates.
Kim SO, Solak HH, Stoykovich MP, Ferrier NJ, De Pablo JJ, Nealey PF., Nature 424(6947), 2003
PMID: 12879065
Liquid morphologies on structured surfaces: from microchannels to microchips
Gau H, Herminghaus S, Lenz P, Lipowsky R., Science 283(5398), 1999
PMID: 9872735
Controlled microfluidic interfaces.
Atencia J, Beebe DJ., Nature 437(7059), 2005
PMID: 16193039
Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography.
Mendes PM, Jacke S, Critchley K, Plaza J, Chen Y, Nikitin K, Palmer RE, Preece JA, Evans SD, Fitzmaurice D., Langmuir 20(9), 2004
PMID: 15875412

Gölzhäuser, Adv. Mater. 13(), 2001

Tinazli, Chem. Eur. J. 11(), 2005
Global analysis of protein activities using proteome chips.
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M., Science 293(5537), 2001
PMID: 11474067

Gates, Annu. Rev. Mater. Res. 34(), 2004

Tarlov, J. Am. Chem. Soc. 115(), 1993
Scanning probe lithography using self-assembled monolayers.
Kramer S, Fuierer RR, Gorman CB., Chem. Rev. 103(11), 2003
PMID: 14611266

Sun, Nano Lett. 4(), 2004
Fabrication of biological nanostructures by scanning near-field photolithography of chloromethylphenylsiloxane monolayers.
Sun S, Montague M, Critchley K, Chen MS, Dressick WJ, Evans SD, Leggett GJ., Nano Lett. 6(1), 2006
PMID: 16402782
Protein chip technology.
Zhu H, Snyder M., Curr Opin Chem Biol 7(1), 2003
PMID: 12547427

Solak, J. Vac. Sci. Technol. B 25(), 2007

Schlenoff, J. Am. Chem. Soc. 117(), 1995

Bain, J. Am. Chem. Soc. 111(), 1989

Turchanin, Adv. Mater. (), 2007

Geyer, Appl. Phys. Lett. 75(), 1999

Eck, Adv. Mater. 17(), 2005

Turchanin, Appl. Phys. Lett. 90(), 2007

Eck, Adv. Mater. 12(), 2000

AUTHOR UNKNOWN, 0

Olsen, J. Chem. Phys. 108(), 1998

AUTHOR UNKNOWN, 2003

Harder, J. Phys. Chem. B 102(), 1998

Laibinis, J. Phys. Chem. 95(), 1991
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17960749
PubMed | Europe PMC

Suchen in

Google Scholar