Single-crossover dynamics: Finite versus infinite populations
Baake E, Herms I (2008)
BULLETIN OF MATHEMATICAL BIOLOGY 70(2): 603-624.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Populations evolving under the joint influence of recombination and resampling (traditionally known as genetic drift) are investigated. First, we summarize and adapt a deterministic approach, as valid for infinite populations, which assumes continuous time and single crossover events. The corresponding nonlinear system of differential equations permits a closed solution, both in terms of the type frequencies and via linkage disequilibria of all orders. To include stochastic effects, we then consider the corresponding finite-population model, the Moran model with single crossovers, and examine it both analytically and by means of simulations. Particular emphasis is on the connection with the deterministic solution. If there is only recombination and every pair of recombined offspring replaces their pair of parents (i.e., there is no resampling), then the expected type frequencies in the finite population, of arbitrary size, equal the type frequencies in the infinite population. If resampling is included, the stochastic process converges, in the infinite-population limit, to the deterministic dynamics, which turns out to be a good approximation already for populations of moderate size.
Stichworte
infinite population limit;
Moran model;
genetic drift;
linkage disequilibria;
recombination
Erscheinungsjahr
2008
Zeitschriftentitel
BULLETIN OF MATHEMATICAL BIOLOGY
Band
70
Ausgabe
2
Seite(n)
603-624
ISSN
0092-8240
eISSN
1522-9602
Page URI
https://pub.uni-bielefeld.de/record/1630777
Zitieren
Baake E, Herms I. Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY. 2008;70(2):603-624.
Baake, E., & Herms, I. (2008). Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY, 70(2), 603-624. https://doi.org/10.1007/s11538-007-9270-5
Baake, Ellen, and Herms, Inke. 2008. “Single-crossover dynamics: Finite versus infinite populations”. BULLETIN OF MATHEMATICAL BIOLOGY 70 (2): 603-624.
Baake, E., and Herms, I. (2008). Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY 70, 603-624.
Baake, E., & Herms, I., 2008. Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY, 70(2), p 603-624.
E. Baake and I. Herms, “Single-crossover dynamics: Finite versus infinite populations”, BULLETIN OF MATHEMATICAL BIOLOGY, vol. 70, 2008, pp. 603-624.
Baake, E., Herms, I.: Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY. 70, 603-624 (2008).
Baake, Ellen, and Herms, Inke. “Single-crossover dynamics: Finite versus infinite populations”. BULLETIN OF MATHEMATICAL BIOLOGY 70.2 (2008): 603-624.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
4 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Partitioning, duality, and linkage disequilibria in the Moran model with recombination.
Esser M, Probst S, Baake E., J Math Biol 73(1), 2016
PMID: 26545359
Esser M, Probst S, Baake E., J Math Biol 73(1), 2016
PMID: 26545359
Inferring genome-wide recombination landscapes from advanced intercross lines: application to yeast crosses.
Illingworth CJ, Parts L, Bergström A, Liti G, Mustonen V., PLoS One 8(5), 2013
PMID: 23658715
Illingworth CJ, Parts L, Bergström A, Liti G, Mustonen V., PLoS One 8(5), 2013
PMID: 23658715
Single-crossover recombination in discrete time.
von Wangenheim U, Baake E, Baake M., J Math Biol 60(5), 2010
PMID: 19636557
von Wangenheim U, Baake E, Baake M., J Math Biol 60(5), 2010
PMID: 19636557
Asymptotic behavior of a Moran model with mutations, drift and recombination among multiple loci.
Bobrowski A, Wojdyła T, Kimmel M., J Math Biol 61(3), 2010
PMID: 19904539
Bobrowski A, Wojdyła T, Kimmel M., J Math Biol 61(3), 2010
PMID: 19904539
23 References
Daten bereitgestellt von Europe PubMed Central.
Aigner, 1979
Asmussen, 2003
An asymptotic maximum principle for essentially linear evolution models.
Baake E, Baake M, Bovier A, Klein M., J Math Biol 50(1), 2004
PMID: 15322822
Baake E, Baake M, Bovier A, Klein M., J Math Biol 50(1), 2004
PMID: 15322822
Baake, Monatsh. Math. 146(), 2005
Baake, Can. J. Math. 55(), 2003
Natural and sexual selection on many loci.
Barton NH, Turelli M., Genetics 127(1), 1991
PMID: 2016044
Barton NH, Turelli M., Genetics 127(1), 1991
PMID: 2016044
Bennett, Ann. Hum. Genet. 18(), 1954
Bürger, 2000
Burke, Ann. Math. Stat. 29(), 1958
Dawson, Linear Algebra Appl. 348(), 2002
Durrett, 2002
Ethier, 1986
Ewens, 2004
Geiringer, Ann. Math. Stat. 15(), 1944
Haccou, 2005
Kemeny, 1981
Lyubich, 1992
McHale, J. Lond. Math. Soc. 28(), 1983
Norris, 1997
Approximate genealogies under genetic hitchhiking.
Pfaffelhuber P, Haubold B, Wakolbinger A., Genetics 174(4), 2006
PMID: 17182733
Pfaffelhuber P, Haubold B, Wakolbinger A., Genetics 174(4), 2006
PMID: 17182733
Popa, 2007
Ringwood, Nieuw Archief voor Wiskd. 3(), 1985
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 17957409
PubMed | Europe PMC
Suchen in