Single-crossover dynamics: Finite versus infinite populations

Baake E, Herms I (2008)
BULLETIN OF MATHEMATICAL BIOLOGY 70(2): 603-624.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Populations evolving under the joint influence of recombination and resampling (traditionally known as genetic drift) are investigated. First, we summarize and adapt a deterministic approach, as valid for infinite populations, which assumes continuous time and single crossover events. The corresponding nonlinear system of differential equations permits a closed solution, both in terms of the type frequencies and via linkage disequilibria of all orders. To include stochastic effects, we then consider the corresponding finite-population model, the Moran model with single crossovers, and examine it both analytically and by means of simulations. Particular emphasis is on the connection with the deterministic solution. If there is only recombination and every pair of recombined offspring replaces their pair of parents (i.e., there is no resampling), then the expected type frequencies in the finite population, of arbitrary size, equal the type frequencies in the infinite population. If resampling is included, the stochastic process converges, in the infinite-population limit, to the deterministic dynamics, which turns out to be a good approximation already for populations of moderate size.
Stichworte
infinite population limit; Moran model; genetic drift; linkage disequilibria; recombination
Erscheinungsjahr
2008
Zeitschriftentitel
BULLETIN OF MATHEMATICAL BIOLOGY
Band
70
Ausgabe
2
Seite(n)
603-624
ISSN
0092-8240
eISSN
1522-9602
Page URI
https://pub.uni-bielefeld.de/record/1630777

Zitieren

Baake E, Herms I. Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY. 2008;70(2):603-624.
Baake, E., & Herms, I. (2008). Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY, 70(2), 603-624. https://doi.org/10.1007/s11538-007-9270-5
Baake, Ellen, and Herms, Inke. 2008. “Single-crossover dynamics: Finite versus infinite populations”. BULLETIN OF MATHEMATICAL BIOLOGY 70 (2): 603-624.
Baake, E., and Herms, I. (2008). Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY 70, 603-624.
Baake, E., & Herms, I., 2008. Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY, 70(2), p 603-624.
E. Baake and I. Herms, “Single-crossover dynamics: Finite versus infinite populations”, BULLETIN OF MATHEMATICAL BIOLOGY, vol. 70, 2008, pp. 603-624.
Baake, E., Herms, I.: Single-crossover dynamics: Finite versus infinite populations. BULLETIN OF MATHEMATICAL BIOLOGY. 70, 603-624 (2008).
Baake, Ellen, and Herms, Inke. “Single-crossover dynamics: Finite versus infinite populations”. BULLETIN OF MATHEMATICAL BIOLOGY 70.2 (2008): 603-624.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Inferring genome-wide recombination landscapes from advanced intercross lines: application to yeast crosses.
Illingworth CJ, Parts L, Bergström A, Liti G, Mustonen V., PLoS One 8(5), 2013
PMID: 23658715
Single-crossover recombination in discrete time.
von Wangenheim U, Baake E, Baake M., J Math Biol 60(5), 2010
PMID: 19636557

23 References

Daten bereitgestellt von Europe PubMed Central.


Aigner, 1979

Asmussen, 2003
Mutation and recombination with tight linkage.
Baake E., J Math Biol 42(5), 2001
PMID: 11419620
An asymptotic maximum principle for essentially linear evolution models.
Baake E, Baake M, Bovier A, Klein M., J Math Biol 50(1), 2004
PMID: 15322822

Baake, Monatsh. Math. 146(), 2005

Baake, Can. J. Math. 55(), 2003
Natural and sexual selection on many loci.
Barton NH, Turelli M., Genetics 127(1), 1991
PMID: 2016044

Bennett, Ann. Hum. Genet. 18(), 1954

Bürger, 2000

Burke, Ann. Math. Stat. 29(), 1958

Dawson, Linear Algebra Appl. 348(), 2002

Durrett, 2002

Ethier, 1986

Ewens, 2004

Geiringer, Ann. Math. Stat. 15(), 1944

Haccou, 2005

Kemeny, 1981

Lyubich, 1992

McHale, J. Lond. Math. Soc. 28(), 1983

Norris, 1997
Approximate genealogies under genetic hitchhiking.
Pfaffelhuber P, Haubold B, Wakolbinger A., Genetics 174(4), 2006
PMID: 17182733

Popa, 2007

Ringwood, Nieuw Archief voor Wiskd. 3(), 1985
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17957409
PubMed | Europe PMC

Suchen in

Google Scholar