NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA

HILGERS G, POTTHOFF M, Müller N, Heinzmann U, HAUNERT L, BRAUN J, BORSTEL G (1995)
PHYSICAL REVIEW B 52(20): 14859-14867.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
HILGERS, G; POTTHOFF, M; Müller, NorbertUniBi; Heinzmann, UlrichUniBi; HAUNERT, L; BRAUN, J; BORSTEL, G
Abstract / Bemerkung
An essential problem in calculating the electronic structure of solids is that created by many-body interactions. They cause self-energy corrections which in insulators and semiconductors range up to the width of the fundamental band gap. Angular-dependent intensity and asymmetry profiles measured in spin-polarized low-energy electron diffraction (SPLEED) from Xe(111) clearly show the necessity of the self-energy correction if compared to standard SPLEED calculations. Effects due to the self-energy correction have to be clearly distinguished from effects due to the inner potential. The real part of the inner potential affects the energy and, by refraction at the surface potential barrier, the angles of the incident and the diffracted beams, whereas the self-energy correction is equivalent to a change of the energy of the primary beam only. This qualitative difference is proved in our SPLEED investigations and is used to determine the self-energy correction and the inner potential from angular-dependent profiles. For the self-energy correction we found a value of Delta E=3.0+/-1.5 eV and for the real (imaginary) part of the inner potential V-Or=3.0+/-1.5 eV (V-Oi=2.0+/-0.5 eV).
Erscheinungsjahr
1995
Zeitschriftentitel
PHYSICAL REVIEW B
Band
52
Ausgabe
20
Seite(n)
14859-14867
ISSN
0163-1829
eISSN
1095-3795
Page URI
https://pub.uni-bielefeld.de/record/1629298

Zitieren

HILGERS G, POTTHOFF M, Müller N, et al. NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA. PHYSICAL REVIEW B. 1995;52(20):14859-14867.
HILGERS, G., POTTHOFF, M., Müller, N., Heinzmann, U., HAUNERT, L., BRAUN, J., & BORSTEL, G. (1995). NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA. PHYSICAL REVIEW B, 52(20), 14859-14867. https://doi.org/10.1103/PhysRevB.52.14859
HILGERS, G, POTTHOFF, M, Müller, Norbert, Heinzmann, Ulrich, HAUNERT, L, BRAUN, J, and BORSTEL, G. 1995. “NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA”. PHYSICAL REVIEW B 52 (20): 14859-14867.
HILGERS, G., POTTHOFF, M., Müller, N., Heinzmann, U., HAUNERT, L., BRAUN, J., and BORSTEL, G. (1995). NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA. PHYSICAL REVIEW B 52, 14859-14867.
HILGERS, G., et al., 1995. NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA. PHYSICAL REVIEW B, 52(20), p 14859-14867.
G. HILGERS, et al., “NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA”, PHYSICAL REVIEW B, vol. 52, 1995, pp. 14859-14867.
HILGERS, G., POTTHOFF, M., Müller, N., Heinzmann, U., HAUNERT, L., BRAUN, J., BORSTEL, G.: NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA. PHYSICAL REVIEW B. 52, 14859-14867 (1995).
HILGERS, G, POTTHOFF, M, Müller, Norbert, Heinzmann, Ulrich, HAUNERT, L, BRAUN, J, and BORSTEL, G. “NECESSITY OF SELF-ENERGY CORRECTIONS IN LEED THEORY FOR XE(111) - COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL SPIN-POLARIZED LEED DATA”. PHYSICAL REVIEW B 52.20 (1995): 14859-14867.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

27 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1974

AUTHOR UNKNOWN, 1973

AUTHOR UNKNOWN, 1976

AUTHOR UNKNOWN, 1977

AUTHOR UNKNOWN, surf sci 322(), 1995

AUTHOR UNKNOWN, phys lett 78a(), 1980
Structure investigations of Xe-adsorbate layers by spin-polarized low-energy electron diffraction I. (?) R30°-Xe/Pt (111)
Potthoff, Surface Science 322(1-3), 1995

Brezini, Journal of Physics C Solid State Physics 14(33), 1981
Electronic structure of Ni and Pd alloys. III. Correlation effects in the Auger spectra of Ni alloys
Bennett, Physical Review B 27(4), 1983
Determination of xenon valence and conduction bands by spin-polarized photoemission.
Kessler B, Eyers A, Horn K, Muller N, Schmiedeskamp B, Schonhense G, Heinzmann U., Phys. Rev. Lett. 59(3), 1987
PMID: 10035733
Theoretical and experimental study of the unoccupied electronic band structure of Ru(001) by electron reflection.
Lindroos M, Pfnur H, Menzel D., Phys. Rev., B Condens. Matter 33(10), 1986
PMID: 9937990
Systematic calculations of the band structures of the rare-gas crystals neon, argon, krypton, and xenon.
Bacalis NC, Papaconstantopoulos DA, Pickett WE., Phys. Rev., B Condens. Matter 38(9), 1988
PMID: 9947084
Photoemission of spin-polarized electrons from GaAs
Pierce, Physical Review B 13(12), 1976
Ni d-band self-energy beyond the low-density limit
Liebsch, Physical Review B 23(10), 1981
Band signatures in the low-energy-electron reflectance spectra of fcc metals
Jaklevic, Physical Review B 26(10), 1982
Crystalline Xenon—A Kinematic Low-Energy Electron-Diffraction Spectrum
Ignatjevs, Physical Review Letters 26(4), 1971
Ultraviolet Absorption of Solid Argon, Krypton, and Xenon
Baldini, Physical Review 128(4), 1962
Effect of Self-Energy Corrections on the Valence-Band Photoemission Spectra of Ni
Liebsch, Physical Review Letters 43(19), 1979
Reflection spectrum of solid krypton and xenon in the vacuum ultraviolet☆
HAENSEL, Optics Communications 2(2), 1970
Longitudinal spin polarization and symmetries in low-energy-electron diffraction: Experiment and theory for Pt(111)
Bauer, Solid State Communications 36(3), 1980
Symmetry properties of spin-polarized leed
Dunlap, Solid State Communications 35(2), 1980
An efficient method for LEED crystallography
KLEINLE, Surface Science 238(1-3), 1990
Band structure calculations of low energy electron diffraction at crystal surfaces
CAPART, Surface Science 13(2), 1969
Surface studies by electron diffraction
ESTRUP, Surface Science 25(1), 1971
The GaAs spin polarized electron source
Pierce, Review of Scientific Instruments 51(4), 1980
Optical Constants of Simple Molecular Crystals. II. Results for Kr and Xe
Scharber, The Journal of Chemical Physics 55(8), 1971
Many body contributions to the electronic structure of nickel
Borgiel, Zeitschrift für Physik B Condensed Matter 78(2), 1990
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 9980826
PubMed | Europe PMC

Suchen in

Google Scholar