Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles

Kakorin S, Stoylov SP, Neumann E (1996)
In: Biophysical Chemistry. BIOPHYSICAL CHEMISTRY, 58(1-2). ELSEVIER SCIENCE BV: 109-116.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The electric (linear) dichroisms observed in the membrane electroporation of salt-filled lipid bilayer vesicles (diameter O = 2a = 0.32 mu m; inside [NaCl] = 0.2 M) in isotonic aqueous 0.284 M sucrose-0.2 mM NaCl solution indicate orientation changes of the anisotropic light scattering centers (lipid head groups) and of the optical transition moments of the membrane-inserted probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Both the turbidity dichroism and DPH absorbance dichroism show peculiar features: (1) at external electric fields E greater than or equal to E(sat) the time course of the dichroism shows a maximum value (reversal): E(sat) = 4.0 (+/- 0.2) MV m(-1), T = 293 K (20 degrees C), (2) this reversal value is independent of the field strength for E greater than or equal to E(sat), (3) the dichroism amplitudes exhibit a maximum value E(max) = 3.0 (+/- 0.5) MV m(-1), (4) for the pulse duration of 10 mu s there is one dominant visible normal mode, the relaxation rate increases up to tau(-1) approximate to 0.6 X 10(6) s(-1) at E(sat) and then decreases for E > E(sat). The data can be described in terms of local lipid phase transitions involving clusters L(n) of n lipids in the pore edges according to the three-state scheme C reversible arrow HO = HI, C being the closed bilayer state, HO the hydrophobic pore state and HI the hydrophilic or inverted pore state with rotated lipid and DPH molecules. At E greater than or equal to E(sat) further transitions HO reversible arrow HO* and HI reversible arrow HI* are rapidly coupled to the C reversible arrow HO transition, which is rate-limiting. The vesicle geometry conditions a cos theta dependence of the local membrane field effects relative to the (E) over right arrow direction and the data reflect cos theta averages. The stationary induced transmembrane voltage Delta phi(theta, lambda(m)) = - 1.5aEf(lambda(m))/cos theta/ does not exceed the limiting value Delta phi(sat) = - 0.53 V, corresponding to the field strength E(m),(sat) = - Delta phi(sat)/d = 100 MV m(-1) (10(3) kV cm(-1)), due to increasing membrane conductivity lambda(m). At E = E(sat), f(lambda(m)) = 0.55, lambda(m) = 0.11 mS m(-1). The lipid cluster phase transition model yields an average pore radius of (r) over bar(p) = 0.35 (+/- 0.05) nm of the assumed cylindrical pore of thickness d = 5 nm, suggesting an average cluster size of [n] = 12 (+/-2) lipids per pore edge. For E > E(sat) the total number of DPH molecules in pore states approaches a saturation value; the fraction of DPH molecules in HI pores is 12 (+/-2)% and that in HO pores is 48 (+/-2)%. The percentage of membrane area P approximate to (lambda(m)/lambda(i)) X 100% of conductive openings filled with the intravesicular medium of conductance lambda(i) = 2.2 S m(-1) linearly increases from P approximate to O% (E = 1.8 MV m(-1)) to P = 0.017% (E = 8.5 MV m(-1)). Analogous estimations made by Kinosita et al. (1993) on the basis of fluorescence imaging data for sea urchin eggs give the same order of magnitude for P (0.02 - 0.2%). The increase in P with the field strength is collinear with the increase in concentration of HI and HI* states with the field strength, whereas the HO and HO* states exhibit a sigmoid field dependence. Therefore our data suggest that it is only the HI and HI* pore states which are conductive. It is noted that the various peculiar features of the dichroism data cannot be described by simple whole particle deformation.
Stichworte
diphenylhexatriene; lipids; turbidity dichroism; vesicles; electroporation; membranes
Erscheinungsjahr
1996
Titel des Konferenzbandes
Biophysical Chemistry
Serien- oder Zeitschriftentitel
BIOPHYSICAL CHEMISTRY
Band
58
Ausgabe
1-2
Seite(n)
109-116
ISSN
0301-4622
Page URI
https://pub.uni-bielefeld.de/record/1628948

Zitieren

Kakorin S, Stoylov SP, Neumann E. Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles. In: Biophysical Chemistry. BIOPHYSICAL CHEMISTRY. Vol 58. ELSEVIER SCIENCE BV; 1996: 109-116.
Kakorin, S., Stoylov, S. P., & Neumann, E. (1996). Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles. Biophysical Chemistry, BIOPHYSICAL CHEMISTRY, 58, 109-116. ELSEVIER SCIENCE BV. https://doi.org/10.1016/0301-4622(95)00090-9
Kakorin, Sergej, Stoylov, SP, and Neumann, Eberhard. 1996. “Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles”. In Biophysical Chemistry, 58:109-116. BIOPHYSICAL CHEMISTRY. ELSEVIER SCIENCE BV.
Kakorin, S., Stoylov, S. P., and Neumann, E. (1996). “Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles” in Biophysical Chemistry BIOPHYSICAL CHEMISTRY, vol. 58, (ELSEVIER SCIENCE BV), 109-116.
Kakorin, S., Stoylov, S.P., & Neumann, E., 1996. Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles. In Biophysical Chemistry. BIOPHYSICAL CHEMISTRY. no.58 ELSEVIER SCIENCE BV, pp. 109-116.
S. Kakorin, S.P. Stoylov, and E. Neumann, “Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles”, Biophysical Chemistry, BIOPHYSICAL CHEMISTRY, vol. 58, ELSEVIER SCIENCE BV, 1996, pp.109-116.
Kakorin, S., Stoylov, S.P., Neumann, E.: Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles. Biophysical Chemistry. BIOPHYSICAL CHEMISTRY. 58, p. 109-116. ELSEVIER SCIENCE BV (1996).
Kakorin, Sergej, Stoylov, SP, and Neumann, Eberhard. “Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles”. Biophysical Chemistry. ELSEVIER SCIENCE BV, 1996.Vol. 58. BIOPHYSICAL CHEMISTRY. 109-116.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Evidence for electro-induced membrane defects assessed by lateral mobility measurement of a GPi anchored protein.
Escoffre JM, Hubert M, Teissié J, Rols MP, Favard C., Eur Biophys J 43(6-7), 2014
PMID: 24781652
Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation.
Towhidi L, Kotnik T, Pucihar G, Firoozabadi SM, Mozdarani H, Miklavcic D., Electromagn Biol Med 27(4), 2008
PMID: 19037786
Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations.
Böckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmüller H., Biophys J 95(4), 2008
PMID: 18469089
Kinetics of transmembrane transport of small molecules into electropermeabilized cells.
Pucihar G, Kotnik T, Miklavcic D, Teissié J., Biophys J 95(6), 2008
PMID: 18539632
Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles.
Kakorin S, Brinkmann U, Neumann E., Biophys Chem 117(2), 2005
PMID: 15923075
Electroporation of subcutaneous mouse tumors by rectangular and trapezium high voltage pulses.
Pliquett U, Elez R, Piiper A, Neumann E., Bioelectrochemistry 62(1), 2004
PMID: 14990329
Digression on membrane electroporation for drug and gene delivery.
Neumann E, Kakorin S., Technol Cancer Res Treat 1(5), 2002
PMID: 12625758
Therapeutic perspectives of in vivo cell electropermeabilization.
Mir LM., Bioelectrochemistry 53(1), 2001
PMID: 11206915
Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles.
Tekle E, Astumian RD, Friauf WA, Chock PB., Biophys J 81(2), 2001
PMID: 11463638
Perspectives for microelectrode arrays for biosensing and membrane electroporation.
Neumann E, Tönsing K, Siemens P., Bioelectrochemistry 51(2), 2000
PMID: 10910160
Gerhard schwarz: scientist and colleague
Neuman E, Winterhalter M., Biophys Chem 85(2-3), 2000
PMID: 10961499
Electroporation of curved lipid membranes in ionic strength gradients
Neumann E, Kakorin S., Biophys Chem 85(2-3), 2000
PMID: 10961510
Fundamentals of electroporative delivery of drugs and genes.
Neumann E, Kakorin S, Toensing K., Bioelectrochem Bioenerg 48(1), 1999
PMID: 10228565
Mechanism of electroporative dye uptake by mouse B cells.
Neumann E, Toensing K, Kakorin S, Budde P, Frey J., Biophys J 74(1), 1998
PMID: 9449314
The importance of electric field distribution for effective in vivo electroporation of tissues.
Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G., Biophys J 74(5), 1998
PMID: 9591642
Electrooptics studies of Escherichia coli electropulsation: orientation, permeabilization, and gene transfer.
Eynard N, Rodriguez F, Trotard J, Teissié J., Biophys J 75(5), 1998
PMID: 9788955
Stress-wave-induced membrane permeation of red blood cells is facilitated by aquaporins.
Lee S, McAuliffe DJ, Zhang H, Xu Z, Taitelbaum J, Flotte TJ, Doukas AG., Ultrasound Med Biol 23(7), 1997
PMID: 9330452
Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation.
Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T., Biophys J 71(2), 1996
PMID: 8842225

16 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1989
Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708

Neumann, Bioelectrochem. Bioenerg. 28(), 1992
Electro-insertion of xeno-glycophorin into the red blood cell membrane.
Mouneimne Y, Tosi PF, Gazitt Y, Nicolau C., Biochem. Biophys. Res. Commun. 159(1), 1989
PMID: 2493789
Mechanism of electroinduced ionic species transport through a multilamellar lipid system.
Chizmadzhev YA, Zarnitsin VG, Weaver JC, Potts RO., Biophys. J. 68(3), 1995
PMID: 7756542
Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin.
Belehradek J Jr, Orlowski S, Ramirez LH, Pron G, Poddevin B, Mir LM., Biochim. Biophys. Acta 1190(1), 1994
PMID: 7509192

Heller, 1993

Abidor, Bioelectrochem. Bioenerg. 6(), 1979
Reversible electrical breakdown of lipid bilayers: formation and evolution of pores.
Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI., Biochim. Biophys. Acta 940(2), 1988
PMID: 2453213

Litster, Phys. Lett. 53A(), 1975

Neumann, 1992
Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers.
Spassova M, Tsoneva I, Petrov AG, Petkova JI, Neumann E., Biophys. Chem. 52(3), 1994
PMID: 7999976
Conformation changes in rRNA induced by electric impulses.
Revzin A, Neumann E., Biophys. Chem. 2(2), 1974
PMID: 4611518

Schwarz, J. Phys. Chem. 71(), 1967

Socirko, Bioelectrochem. Bioenerg. 34(), 1994
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 8679914
PubMed | Europe PMC

Suchen in

Google Scholar