Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases

Ottl J, Battistuta R, Pieper M, Tschesche H, Bode W, Kuhn K, Moroder L (1996)
FEBS LETTERS 398(1): 31-36.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ottl, J; Battistuta, R; Pieper, M; Tschesche, HaraldUniBi; Bode, W; Kuhn, K; Moroder, L
Abstract / Bemerkung
A heterotrimeric collagen peptide was designed and synthesized which contains the collagenase cleavage site (P-4-P'(9/10)) of type I collagen linked to a C-terminal cystine-knot, and N-terminally extended with (Gly-Pro-Hyp)(5) triplets for stabilization of the triple-helical conformation, By employing a newly developed regioselective cysteine pairing strategy based exclusively on thiol disulfide exchange reactions, we succeeded in assembling in high yields and in a reproducible manner the triple-stranded cystine peptide, While the single chains showed no tendency to self-association into triple helices, the heterotrimer (alpha 1 alpha 2 alpha 1') was found to exhibit a typical collagen-like CD spectrum at room temperature and a melting temperature (T-m) of 33 degrees C, This triple-helical collagen-like peptide is cleaved by the full-length human neutrophil collagenase (MMP-8) at a single locus fully confirming the correct raster of the heterotrimer, Its digestion proceeds at rates markedly higher than that of a single alpha 1' chain, Tn contrast, opposite digestion rates were measured with the catalytic Phe(79)-MMP-8 domain of HNC. Moreover, the full-length enzyme exhibits K-m values of 5 mu M and 1 mM for the heterotrimer and the single alpha 1' chain, respectively, which compare well with those reported for collagen type I (similar to 1 mu M), gelatine (similar to 10 mu M) and for octapeptides of the cleavage sequence (greater than or equal to 1 mM), The high affinity of the MMP-8 for the triple-helical heterotrimer and the fast digestion of this collagenous peptide confirm the decisive role of the hemopexin domain in recognition and possibly, partial unfolding of collagen.
Stichworte
triple helix; enzymatic; digestion; collagenase; catalytic domain; hemopexin domain; heterotrimer; collagen peptide; synthesis
Erscheinungsjahr
1996
Zeitschriftentitel
FEBS LETTERS
Band
398
Ausgabe
1
Seite(n)
31-36
ISSN
0014-5793
Page URI
https://pub.uni-bielefeld.de/record/1628600

Zitieren

Ottl J, Battistuta R, Pieper M, et al. Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases. FEBS LETTERS. 1996;398(1):31-36.
Ottl, J., Battistuta, R., Pieper, M., Tschesche, H., Bode, W., Kuhn, K., & Moroder, L. (1996). Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases. FEBS LETTERS, 398(1), 31-36. https://doi.org/10.1016/S0014-5793(96)01212-4
Ottl, J, Battistuta, R, Pieper, M, Tschesche, Harald, Bode, W, Kuhn, K, and Moroder, L. 1996. “Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases”. FEBS LETTERS 398 (1): 31-36.
Ottl, J., Battistuta, R., Pieper, M., Tschesche, H., Bode, W., Kuhn, K., and Moroder, L. (1996). Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases. FEBS LETTERS 398, 31-36.
Ottl, J., et al., 1996. Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases. FEBS LETTERS, 398(1), p 31-36.
J. Ottl, et al., “Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases”, FEBS LETTERS, vol. 398, 1996, pp. 31-36.
Ottl, J., Battistuta, R., Pieper, M., Tschesche, H., Bode, W., Kuhn, K., Moroder, L.: Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases. FEBS LETTERS. 398, 31-36 (1996).
Ottl, J, Battistuta, R, Pieper, M, Tschesche, Harald, Bode, W, Kuhn, K, and Moroder, L. “Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot - Models for collagen catabolism by matrix-metalloproteases”. FEBS LETTERS 398.1 (1996): 31-36.

44 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The 3-nitro-2-pyridinesulfenyl group: synthesis and applications to peptide chemistry.
Rentier C, Fukumoto K, Taguchi A, Hayashi Y., J Pept Sci 23(7-8), 2017
PMID: 28120464
cOSPREY: A Cloud-Based Distributed Algorithm for Large-Scale Computational Protein Design.
Pan Y, Dong Y, Zhou J, Hallen M, Donald BR, Zeng J, Xu W., J Comput Biol 23(9), 2016
PMID: 27154509
Structural insight for chain selection and stagger control in collagen.
Boudko SP, Bächinger HP., Sci Rep 6(), 2016
PMID: 27897211
Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.
Parmar AS, Xu F, Pike DH, Belure SV, Hasan NF, Drzewiecki KE, Shreiber DI, Nanda V., Biochemistry 54(32), 2015
PMID: 26225466
A Convergent Synthesis of Homogeneous Reducible Polypeptides.
Ericson MD, Rice KG., Tetrahedron Lett 54(35), 2013
PMID: 24493905
Defining requirements for collagenase cleavage in collagen type III using a bacterial collagen system.
Yu Z, Visse R, Inouye M, Nagase H, Brodsky B., J Biol Chem 287(27), 2012
PMID: 22573319
The NC2 domain of type IX collagen determines the chain register of the triple helix.
Boudko SP, Bächinger HP., J Biol Chem 287(53), 2012
PMID: 23132862
Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel.
O'Leary LE, Fallas JA, Bakota EL, Kang MK, Hartgerink JD., Nat Chem 3(10), 2011
PMID: 21941256
Exosite interactions impact matrix metalloproteinase collagen specificities.
Robichaud TK, Steffensen B, Fields GB., J Biol Chem 286(43), 2011
PMID: 21896477
Selective assembly of a high stability AAB collagen heterotrimer.
Russell LE, Fallas JA, Hartgerink JD., J Am Chem Soc 132(10), 2010
PMID: 20058861
De novo self-assembling collagen heterotrimers using explicit positive and negative design.
Xu F, Zhang L, Koder RL, Nanda V., Biochemistry 49(11), 2010
PMID: 20170197
Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures.
Fallas JA, O'Leary LE, Hartgerink JD., Chem Soc Rev 39(9), 2010
PMID: 20676409
Effect of aged garlic extract on wound healing: a new frontier in wound management.
Ejaz S, Chekarova I, Cho JW, Lee SY, Ashraf S, Lim CW., Drug Chem Toxicol 32(3), 2009
PMID: 19538015
Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models.
Boulègue C, Musiol HJ, Götz MG, Renner C, Moroder L., Antioxid Redox Signal 10(1), 2008
PMID: 17961005
Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences.
Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Moss ML, Fields GB., Biochemistry 46(12), 2007
PMID: 17338550
Facile and efficient assembly of collagen-like triple helices on a TRIS scaffold.
Cai W, Wong D, Kinberger GA, Kwok SW, Taulane JP, Goodman M., Bioorg Chem 35(4), 2007
PMID: 17368718
Rapid synthesis of a register-specific heterotrimeric type I collagen helix encompassing the integrin alpha2beta1 binding site.
Slatter DA, Foley LA, Peachey AR, Nietlispach D, Farndale RW., J Mol Biol 359(2), 2006
PMID: 16631195
Synthesis of single- and multiple-stranded cystine-rich peptides.
Moroder L, Musiol HJ, Götz M, Renner C., Biopolymers 80(2-3), 2005
PMID: 15612050
Assays of matrix metalloproteinases (MMPs) activities: a review.
Lombard C, Saulnier J, Wallach J., Biochimie 87(3-4), 2005
PMID: 15781313
Characterization of collagen-like heterotrimers: implications for triple-helix stability.
Berisio R, Granata V, Vitagliano L, Zagari A., Biopolymers 73(6), 2004
PMID: 15048771
Analysis of matrix metalloproteinase triple-helical peptidase activity with substrates incorporating fluorogenic L- or D-amino acids.
Lauer-Fields JL, Kele P, Sui G, Nagase H, Leblanc RM, Fields GB., Anal Biochem 321(1), 2003
PMID: 12963061
Matrix metalloproteinases and collagen catabolism.
Lauer-Fields JL, Juska D, Fields GB., Biopolymers 66(1), 2002
PMID: 12228918
Triple-helical peptide analysis of collagenolytic protease activity.
Lauer-Fields JL, Fields GB., Biol Chem 383(7-8), 2002
PMID: 12437092
Collagen model peptides: Sequence dependence of triple-helix stability.
Persikov AV, Ramshaw JA, Brodsky B., Biopolymers 55(6), 2000
PMID: 11304671
Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases.
Ottl J, Gabriel D, Murphy G, Knäuper V, Tominaga Y, Nagase H, Kröger M, Tschesche H, Bode W, Moroder L., Chem Biol 7(2), 2000
PMID: 10662694
Folding of peptide models of collagen and misfolding in disease.
Baum J, Brodsky B., Curr Opin Struct Biol 9(1), 1999
PMID: 10047579

38 References

Daten bereitgestellt von Europe PubMed Central.

The molecular structure of collagen.
RICH A, CRICK FH., J. Mol. Biol. 3(), 1961
PMID: 14491907

AUTHOR UNKNOWN, 0
Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution.
Bella J, Eaton M, Brodsky B, Berman HM., Science 266(5182), 1994
PMID: 7695699
Electrostatic interactions in collagen-like triple-helical peptides.
Venugopal MG, Ramshaw JA, Braswell E, Zhu D, Brodsky B., Biochemistry 33(25), 1994
PMID: 8011657
Fragments of human fibroblast collagenase. Purification and characterization.
Clark IM, Cawston TE., Biochem. J. 263(1), 1989
PMID: 2557822

Roth, Makromol. Chem. 180(), 1979

Roth, Biopolymers 19(), 1980

Fields, Lett. Peptide Sci. 3(), 1996

Goodman, J. Am. Chem. Soc. 118(), 1996
Chain conformation in the collagen molecule.
Fraser RD, MacRae TP, Suzuki E., J. Mol. Biol. 129(3), 1979
PMID: 458854
The anatomy and taxonomy of protein structure.
Richardson JS., Adv. Protein Chem. 34(), 1981
PMID: 7020376

Atherton, J. Chem. Soc. Perkin Trans. 1(), 1981

Knorr, Tetrahedron Lett. 30(), 1989

Van, Matrix Suppl. 1(), 1992

Wünsch, Hoppe-Seylers's Z. Physiol. Chem. 363(), 1982

AUTHOR UNKNOWN, 0

Matsueda, Chem. Lett. (), 1982

Rabanal, Tetrahedron Lett. 37(), 1996

AUTHOR UNKNOWN, 0

Moroder, Biopolymers 12(), 1973

Feng, J. Am. Chem. Soc. 118(), 1996

Melacini, J. Am. Chem. Soc. 118(), 1996

AUTHOR UNKNOWN, 0
The recombinant catalytic domain of human neutrophil collagenase lacks type I collagen substrate specificity.
Schnierer S, Kleine T, Gote T, Hillemann A, Knauper V, Tschesche H., Biochem. Biophys. Res. Commun. 191(2), 1993
PMID: 8460992
The role of the C-terminal domain in collagenase and stromelysin specificity.
Murphy G, Allan JA, Willenbrock F, Cockett MI, O'Connell JP, Docherty AJ., J. Biol. Chem. 267(14), 1992
PMID: 1315762
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 8946948
PubMed | Europe PMC

Suchen in

Google Scholar