Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells

Maximov AV, Vedernikova EA, Hinssen H, Khaitlina SY, Negulyaev YA (1997)
FEBS LETTERS 412(1): 94-96.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
With the use of the patch-clamp technique, physiological mechanisms of Na+ channel regulation involving submembranous actin rearrangements were examined in human myeloid leukemia K562 cells. We found that the actin-severing protein gelsolin applied to cytoplasmic surface of membrane fragments at a high level of [Ca2+](i) (1 mu M) increased drastically the activity of Na-selective channels of 12 pS unitary conductance. In the experiments on intact cells, the elevation of [Ca2+](i) using the ionophore 4Br-A23187 also resulted in Na+ channel activation. Addition of actin to the cytoplasmic surface of membrane patches reduced this activity to background level, likely due to actin polymerization. Our data imply that Ca-dependent modulations of the actin cytoskeleton may represent one of the general mechanisms of channel regulation and cell signalling. (C) 1997 Federation of European Biochemical Societies.
Erscheinungsjahr
Zeitschriftentitel
FEBS LETTERS
Band
412
Zeitschriftennummer
1
Seite
94-96
ISSN
PUB-ID

Zitieren

Maximov AV, Vedernikova EA, Hinssen H, Khaitlina SY, Negulyaev YA. Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells. FEBS LETTERS. 1997;412(1):94-96.
Maximov, A. V., Vedernikova, E. A., Hinssen, H., Khaitlina, S. Y., & Negulyaev, Y. A. (1997). Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells. FEBS LETTERS, 412(1), 94-96. doi:10.1016/S0014-5793(97)00754-0
Maximov, A. V., Vedernikova, E. A., Hinssen, H., Khaitlina, S. Y., and Negulyaev, Y. A. (1997). Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells. FEBS LETTERS 412, 94-96.
Maximov, A.V., et al., 1997. Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells. FEBS LETTERS, 412(1), p 94-96.
A.V. Maximov, et al., “Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells”, FEBS LETTERS, vol. 412, 1997, pp. 94-96.
Maximov, A.V., Vedernikova, E.A., Hinssen, H., Khaitlina, S.Y., Negulyaev, Y.A.: Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells. FEBS LETTERS. 412, 94-96 (1997).
Maximov, AV, Vedernikova, EA, Hinssen, Horst, Khaitlina, SY, and Negulyaev, YA. “Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells”. FEBS LETTERS 412.1 (1997): 94-96.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Extracellular protease trypsin activates amiloride-insensitive sodium channels in human leukemia cells.
Sudarikova AV, Vasileva VY, Vassilieva IO, Negulyaev YA, Morachevskaya EA, Chubinskiy-Nadezhdin VI., J Cell Biochem 120(1), 2019
PMID: 30203535
Possible role of non-muscle alpha-actinins in muscle cell mechanosensitivity.
Ogneva IV, Biryukov NS, Leinsoo TA, Larina IM., PLoS One 9(4), 2014
PMID: 24780915
Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles.
Ogneva IV, Buravkov SV, Shubenkov AN, Buravkova LB., Nanoscale Res Lett 9(1), 2014
PMID: 24948901
Serum- and glucocorticoid-inducible kinase SGK1 regulates reorganization of actin cytoskeleton in mast cells upon degranulation.
Schmid E, Gu S, Yang W, Münzer P, Schaller M, Lang F, Stournaras C, Shumilina E., Am J Physiol Cell Physiol 304(1), 2013
PMID: 23015548
Development of a multilevel approach for the evaluation of nanomaterials' toxicity.
Galluzzi L, Chiarantini L, Pantucci E, Curci R, Merikhi J, Hummel H, Bachmann PK, Manuali E, Pezzotti G, Magnani M., Nanomedicine (Lond) 7(3), 2012
PMID: 22047028
Regulation of sodium channel activity by capping of actin filaments.
Shumilina EV, Negulyaev YA, Morachevskaya EA, Hinssen H, Khaitlina SY., Mol Biol Cell 14(4), 2003
PMID: 12686620
Non-hydrolyzable analog of GTP induces activity of Na+ channels via disassembly of cortical actin cytoskeleton.
Shumilina EV, Khaitlina SY, Morachevskaya EA, Negulyaev YA., FEBS Lett 547(1-3), 2003
PMID: 12860381
CFTR in K562 human leukemic cells.
Assef YA, Damiano AE, Zotta E, Ibarra C, Kotsias BA., Am J Physiol Cell Physiol 285(2), 2003
PMID: 12842835
Mineralocorticoid receptor-mediated signaling regulates the ion gated sodium channel in vascular endothelial cells and requires an intact cytoskeleton.
Golestaneh N, Klein C, Valamanesh F, Suarez G, Agarwal MK, Mirshahi M., Biochem Biophys Res Commun 280(5), 2001
PMID: 11162670
Regions in the carboxy terminus of alpha-bENaC involved in gating and functional effects of actin.
Copeland SJ, Berdiev BK, Ji HL, Lockhart J, Parker S, Fuller CM, Benos DJ., Am J Physiol Cell Physiol 281(1), 2001
PMID: 11401846
Reorganization of actin in neurons after propofol exposure.
Oscarsson A, Massoumi R, Sjölander A, Eintrei C., Acta Anaesthesiol Scand 45(10), 2001
PMID: 11736672
Expression and electrophysiological function of actin in chick cerebellar neurons.
Tandai-Hiruma M, Mori-Okamoto J, Kotani M, Miura K, Takishima K, Nishida Y., Neurochem Res 25(8), 2000
PMID: 11055747
General overview of mineralocorticoid hormone action.
Agarwal MK, Mirshahi M., Pharmacol Ther 84(3), 1999
PMID: 10665831
Ca2+ regulation of gelsolin activity: binding and severing of F-actin.
Kinosian HJ, Newman J, Lincoln B, Selden LA, Gershman LC, Estes JE., Biophys J 75(6), 1998
PMID: 9826630

18 References

Daten bereitgestellt von Europe PubMed Central.

Actin filaments regulate epithelial Na+ channel activity.
Cantiello HF, Stow JL, Prat AG, Ausiello DA., Am. J. Physiol. 261(5 Pt 1), 1991
PMID: 1659214
Actin and actin-binding proteins. A critical evaluation of mechanisms and functions.
Pollard TD, Cooper JA., Annu. Rev. Biochem. 55(), 1986
PMID: 3527055
Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking.
Janmey PA, Chaponnier C, Lind SE, Zaner KS, Stossel TP, Yin HL., Biochemistry 24(14), 1985
PMID: 2994715
Effects of cytochalasin and phalloidin on actin.
Cooper JA., J. Cell Biol. 105(4), 1987
PMID: 3312229
Sodium-selective channels in membranes of rat macrophages.
Negulyaev YA, Vedernikova EA., J. Membr. Biol. 138(1), 1994
PMID: 8189430
A Ca2+-dependent actin modulator from vertebrate smooth muscle.
Hinssen H, Small JV, Sobieszek A., FEBS Lett. 166(1), 1984
PMID: 6537923
Association of gelsolin with actin filaments and cell membranes of macrophages and platelets.
Hartwig JH, Chambers KA, Stossel TP., J. Cell Biol. 108(2), 1989
PMID: 2537317
Polarization of gelsolin and actin binding protein in kidney epithelial cells.
Hartwig JH, Brown D, Ausiello DA, Stossel TP, Orci L., J. Histochem. Cytochem. 38(8), 1990
PMID: 2164058
Ca2+ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in a well defined model system.
Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR., Biophys. J. 66(5), 1994
PMID: 8061216
Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells.
Smith PR, Saccomani G, Joe EH, Angelides KJ, Benos DJ., Proc. Natl. Acad. Sci. U.S.A. 88(16), 1991
PMID: 1651488
Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets.
Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP., Cell 82(4), 1995
PMID: 7664343
Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate.
Janmey PA, Stossel TP., Nature 325(6102), 1987
PMID: 3027569

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9257697
PubMed | Europe PMC

Suchen in

Google Scholar