The diametric theorem in Hamming spaces - Optimal anticodes
Ahlswede R, Khachatrian LH (1998)
ADVANCES IN APPLIED MATHEMATICS 20(4): 429-449.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ahlswede, RudolfUniBi;
Khachatrian, Levon H.
Einrichtung
Abstract / Bemerkung
For a Hamming space (H-alpha(n), d(H)), the set of n-length words over the alphabet H-alpha = {0,1,...,alpha-1} endowed with the distance d(H), which for two words x(n) = (x(1),...,x(n)), y(n) = (y(1),...,y(n)) is an element of H-alpha(n) counts the number of different components, we determine the maximal cardinality of subsets with a prescribed diameter d or, in another language, anticodes with distance d. We refer to the result as the diametric theorem. In a sense anticodes are dual to codes, which have a prescribed lower bound on the pairwise distance. It is a hopeless task to determine their maximal sizes exactly. We find it remarkable that the diametric theorem (for arbitrary a) can be derived from our recent complete intersection theorem, which can be viewed as a diametric theorem (for alpha = 2) in the restricted case, where all n-length words considered have exactly k ones. (C) 1998 Academic Press.
Erscheinungsjahr
1998
Zeitschriftentitel
ADVANCES IN APPLIED MATHEMATICS
Band
20
Ausgabe
4
Seite(n)
429-449
ISSN
0196-8858
Page URI
https://pub.uni-bielefeld.de/record/1625787
Zitieren
Ahlswede R, Khachatrian LH. The diametric theorem in Hamming spaces - Optimal anticodes. ADVANCES IN APPLIED MATHEMATICS. 1998;20(4):429-449.
Ahlswede, R., & Khachatrian, L. H. (1998). The diametric theorem in Hamming spaces - Optimal anticodes. ADVANCES IN APPLIED MATHEMATICS, 20(4), 429-449. https://doi.org/10.1006/aama.1998.0588
Ahlswede, Rudolf, and Khachatrian, Levon H. 1998. “The diametric theorem in Hamming spaces - Optimal anticodes”. ADVANCES IN APPLIED MATHEMATICS 20 (4): 429-449.
Ahlswede, R., and Khachatrian, L. H. (1998). The diametric theorem in Hamming spaces - Optimal anticodes. ADVANCES IN APPLIED MATHEMATICS 20, 429-449.
Ahlswede, R., & Khachatrian, L.H., 1998. The diametric theorem in Hamming spaces - Optimal anticodes. ADVANCES IN APPLIED MATHEMATICS, 20(4), p 429-449.
R. Ahlswede and L.H. Khachatrian, “The diametric theorem in Hamming spaces - Optimal anticodes”, ADVANCES IN APPLIED MATHEMATICS, vol. 20, 1998, pp. 429-449.
Ahlswede, R., Khachatrian, L.H.: The diametric theorem in Hamming spaces - Optimal anticodes. ADVANCES IN APPLIED MATHEMATICS. 20, 429-449 (1998).
Ahlswede, Rudolf, and Khachatrian, Levon H. “The diametric theorem in Hamming spaces - Optimal anticodes”. ADVANCES IN APPLIED MATHEMATICS 20.4 (1998): 429-449.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in