Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures

Heidemann R, Lütkemeyer D, Büntemeyer H, Lehmann J (1998)
CYTOTECHNOLOGY 26(3): 185-197.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
The effects of dissolved oxygen and the concentration of essential amino acids upon the metabolism of two mammalian cell lines (rCHO producing human active (t-PA) and a mouse-mouse hybridoma) were investigated in batch, chemostat, and perfusion cultures. Intracellular amino acid concentrations were measured for both cell lines during repeated batch cultures and the Ks-values for the essential amino acids were calculated using Monod equations via computer simulation. The Ks-values were in the range of 10 mmol L-1 and the pool of most intracellular amino acids remained constant at about 10-100 fold higher in concentration than in the medium. No significant differences were observed between the hybridoma and CHO cell. The specific nutrient uptake rates corresponded with the cell specific growth rate and the effects of reduced dissolved oxygen concentrations only became evident when the DO dropped below 5% of air saturation (critical concentration below 1%). Nevertheless, a correlation between nutrient concentration and specific oxygen uptake was detected.
Stichworte
intracellular amino acids; productivity; Monod constants (K-S-values); CHO; dissolved oxygen (DO); specific uptake rates; hybridoma; essential amino acids
Erscheinungsjahr
1998
Zeitschriftentitel
CYTOTECHNOLOGY
Band
26
Ausgabe
3
Seite(n)
185-197
ISSN
0920-9069
Page URI
https://pub.uni-bielefeld.de/record/1625625

Zitieren

Heidemann R, Lütkemeyer D, Büntemeyer H, Lehmann J. Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures. CYTOTECHNOLOGY. 1998;26(3):185-197.
Heidemann, R., Lütkemeyer, D., Büntemeyer, H., & Lehmann, J. (1998). Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures. CYTOTECHNOLOGY, 26(3), 185-197. https://doi.org/10.1023/A:1007917409455
Heidemann, R, Lütkemeyer, Dirk, Büntemeyer, Heino, and Lehmann, J. 1998. “Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures”. CYTOTECHNOLOGY 26 (3): 185-197.
Heidemann, R., Lütkemeyer, D., Büntemeyer, H., and Lehmann, J. (1998). Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures. CYTOTECHNOLOGY 26, 185-197.
Heidemann, R., et al., 1998. Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures. CYTOTECHNOLOGY, 26(3), p 185-197.
R. Heidemann, et al., “Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures”, CYTOTECHNOLOGY, vol. 26, 1998, pp. 185-197.
Heidemann, R., Lütkemeyer, D., Büntemeyer, H., Lehmann, J.: Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures. CYTOTECHNOLOGY. 26, 185-197 (1998).
Heidemann, R, Lütkemeyer, Dirk, Büntemeyer, Heino, and Lehmann, J. “Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures”. CYTOTECHNOLOGY 26.3 (1998): 185-197.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Enhancing the functionality of a microscale bioreactor system as an industrial process development tool for mammalian perfusion culture.
Sewell DJ, Turner R, Field R, Holmes W, Pradhan R, Spencer C, Oliver SG, Slater NK, Dikicioglu D., Biotechnol Bioeng 116(6), 2019
PMID: 30712286
Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form.
Nelp MT, Kates PA, Hunt JT, Newitt JA, Balog A, Maley D, Zhu X, Abell L, Allentoff A, Borzilleri R, Lewis HA, Lin Z, Seitz SP, Yan C, Groves JT., Proc Natl Acad Sci U S A 115(13), 2018
PMID: 29531094
Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models.
Zirath H, Rothbauer M, Spitz S, Bachmann B, Jordan C, Müller B, Ehgartner J, Priglinger E, Mühleder S, Redl H, Holnthoner W, Harasek M, Mayr T, Ertl P., Front Physiol 9(), 2018
PMID: 30018569
Rapid Generation and Detection of Biomimetic Oxygen Concentration Gradients In Vitro.
Khan DH, Roberts SA, Cressman JR, Agrawal N., Sci Rep 7(1), 2017
PMID: 29044222
Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.
Super A, Jaccard N, Cardoso Marques MP, Macown RJ, Griffin LD, Veraitch FS, Szita N., Biotechnol J 11(9), 2016
PMID: 27214658
On the model-based optimization of secreting mammalian cell (GS-NS0) cultures.
Kiparissides A, Pistikopoulos EN, Mantalaris A., Biotechnol Bioeng 112(3), 2015
PMID: 25219609
Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method.
Xing Z, Bishop N, Leister K, Li ZJ., Biotechnol Prog 26(1), 2010
PMID: 19834967
Scale-up analysis for a CHO cell culture process in large-scale bioreactors.
Xing Z, Kenty BM, Li ZJ, Lee SS., Biotechnol Bioeng 103(4), 2009
PMID: 19280669
Growth behavior of number distributed adherent MDCK cells for optimization in microcarrier cultures.
Bock A, Sann H, Schulze-Horsel J, Genzel Y, Reichl U, Möhler L., Biotechnol Prog 25(6), 2009
PMID: 19691122
A simple kinetic model for myeloma cell culture with consideration of lysine limitation.
Liu YH, Bi JX, Zeng AP, Yuan JQ., Bioprocess Biosyst Eng 31(6), 2008
PMID: 18253755
Cost-effective engineering of a small-scale bioreactor.
Bartholomew SR, Tansey JT., Biotechnol Bioeng 96(2), 2007
PMID: 16917951
Heterogeneous conditions in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures.
Serrato JA, Palomares LA, Meneses-Acosta A, Ramírez OT., Biotechnol Bioeng 88(2), 2004
PMID: 15449295
Glucose-based optimization of CHO-cell perfusion cultures.
Dowd JE, Kwok KE, Piret JM., Biotechnol Bioeng 75(2), 2001
PMID: 11536149
Endogenous retrovirus particles and their repercussion effects on the growth behaviour of continuous hybridoma cultivation processes.
Hawerkamp A, Gudermann F, Falkenhain A, Luetkemeyer D, Kahmann U, Lehmann J., Cytotechnology 37(2), 2001
PMID: 19002905
The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells.
Heidemann R, Zhang C, Qi H, Larrick Rule J, Rozales C, Park S, Chuppa S, Ray M, Michaels J, Konstantinov K, Naveh D., Cytotechnology 32(2), 2000
PMID: 19002977
Effects on growth behavior in continuous hybridoma cell cultures: The role of viral contamination.
Hawerkamp A, Lütkemeyer D, Gudermann F, Falkenhain A, Büntemeyer H, Lehmann J., Cytotechnology 28(1-3), 1998
PMID: 19003403

48 References

Daten bereitgestellt von Europe PubMed Central.

Electron microscopy of hybridoma cells with special regard to monoclonal antibody production.
al-Rubeai M, Mills D, Emery AN., Cytotechnology 4(1), 1990
PMID: 1366719

Bender DA., 1985
Optimization of serum-free fermentation processes for antibody production.
Buntemeyer H, Lutkemeyer D, Lehmann J., Cytotechnology 5(1), 1991
PMID: 1367052
Optimization of serum-free fermentation processes for antibody production.
Buntemeyer H, Lutkemeyer D, Lehmann J., Cytotechnology 5(1), 1991
PMID: 1367052
Comparison of nutrient requirements of mammalian cell lines
Büntemeyer H, Stenner A, Seewöster T, Heidemann R, Tebbe H, Wallerius C, Lehmann J., 1995
Glutamine-limited batch hybridoma growth and antibody production: experiment and model.
Dalili M, Sayles GD, Ollis DF., Biotechnol. Bioeng. 36(1), 1990
PMID: 18592611
Fragmented DNA and apoptotic bodies document the programmed way of cell death in hybridoma cultures.
Franek F, Vomastek T, Dolnikova J., Cytotechnology 9(1-3), 1992
PMID: 1369164
Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates.
Glacken MW, Adema E, Sinskey AJ., Biotechnol. Bioeng. 32(4), 1988
PMID: 18587747
Amino acid transporters: Systematic approach and principles of control
Guidotti GG, Gazzola GC., 1992

Halliwell B, Gutterridge JM., 1985
Extra- and intracellular amino acid concentrations in continuous Chinese hamster ovary cell culture.
Hansen HA, Emborg C., Appl. Microbiol. Biotechnol. 41(5), 1994
PMID: 7765083
The Super-Spinner: a low cost animal cell culture bioreactor for the CO2 incubator.
Heidemann R, Riese U, Lutkemeyer D, Buntemeyer H, Lehmann J., Cytotechnology 14(1), 1994
PMID: 7765107
Determination of KS-values (Monod constants) for essential amino acids using CHO and hybridoma cells in batch and chemostat cultures
Heidemann R, Lütkemeyer D, Büntemeyer H, Lehmann J., 1995

AUTHOR UNKNOWN, 0
Effect of glucose on the cultivation of mammalian cells
Hu WS, Dodge TC, Frame KK, Himes VB., 1987
Strategies for optimising serum-free media.
Hewlett G., Cytotechnology 5(1), 1991
PMID: 1367049
Characteristics of system ASC for transport of neutral amino acids in the isolated rat hepatocyte.
Kilberg MS, Handlogten ME, Christensen HN., J. Biol. Chem. 256(7), 1981
PMID: 7204404
Effects of glucose-feeding on glucose-and oxygen requirement, energy charge and interferon production of human lymphoid cells cultivated in vitro
Krömer E, Katinger HWD., 1982

AUTHOR UNKNOWN, 0
Bubble-free reactors and their development for continuous culture with cell recycle
Lehmann J, Vorlop J, Büntemeyer H., 1988
Production of tPA in recombinant CHO cells under oxygen-limited conditions.
Lin AA, Kimura R, Miller WM., Biotechnol. Bioeng. 42(3), 1993
PMID: 18613018
Enzymology of glutamine
Meister A., 1984
Induction of apoptosis in oxygen-deprived cultures of hybridoma cells.
Mercille S, Massie B., Cytotechnology 15(1-3), 1994
PMID: 7765924
Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture.
Miller WM, Wilke CR, Blanch HW., J. Cell. Physiol. 132(3), 1987
PMID: 3654764

Monod J., 1942
Neutral amino acid transport systems of tissue culture cells.
Oxender DL, Lee M, Moore PA, Cecchini G., J. Biol. Chem. 252(8), 1977
PMID: 853037

Pirt SJ., 1985
The supply of oxygen to submerged cultures of BHK 21 cells.
Radlett PJ, Telling RC, Whitside JP, Maskell MA., Biotechnol. Bioeng. 14(3), 1972
PMID: 5063909
Production of monoclonal antibodies in culture
Reuveny S, Velez D, Riske F, Mcmillan JD, Miller L., 1985
Extra- and intracellular metabolite concentrations for murine hybridoma cells.
Schmid G, Blanch HW., Appl. Microbiol. Biotechnol. 36(5), 1992
PMID: 1368066
Transcription level of CHO cells influenced by amino acids
Seewöster T, Korioth F, Frey J, Lehmann J., 1995
Neutral amino acid transport systems in Chinese hamster ovary cells.
Shotwell MA, Jayme DW, Kilberg MS, Oxender DL., J. Biol. Chem. 256(11), 1981
PMID: 7240147
The influence of dissolved oxygen tension on the metabolic activity of an immobilized hybridoma population.
Thommes J, Gatgens J, Biselli M, Runstadler PW, Wandrey C., Cytotechnology 13(1), 1993
PMID: 7764605
Effects of cell density and glucose and glutamine levels on the respiration rates of hybridoma cells.
Wohlpart D, Kirwan D, Gainer J., Biotechnol. Bioeng. 36(6), 1990
PMID: 18595122
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22358616
PubMed | Europe PMC

Suchen in

Google Scholar