Contract-net-based learning in a user-adaptive interface agency

Lenzmann B, Wachsmuth I (1997)
In: Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments. Weiss G (Ed); LNAI, 1221. Berlin: Springer-Verlag: 202-222.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Lenzmann, Britta; Wachsmuth, IpkeUniBi
Herausgeber*in
Weiss, Gerhard
Abstract / Bemerkung
This paper describes a multi-agent learning approach to adaptation to users' preferences realized by an interface agency. Using a contract-net-based negotiation technique, agents as contractors as well as managers negotiate with each other to pursue the overall goal of dynamic user adaptation. By learning from indirect user feedback, the adjustment of internal credit vectors and the assignment of contractors that gained maximal credit with respect to the user's current preferences, the preceding session, and current situational circumstances can be realized. In this way,user adaptation is achieved without accumulating explicit user models but by the use of implicit, distributed user models.
Erscheinungsjahr
1997
Titel des Konferenzbandes
Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments
Serien- oder Zeitschriftentitel
LNAI
Band
1221
Seite(n)
202-222
ISBN
3-540-62934-3
Page URI
https://pub.uni-bielefeld.de/record/1625508

Zitieren

Lenzmann B, Wachsmuth I. Contract-net-based learning in a user-adaptive interface agency. In: Weiss G, ed. Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments. LNAI. Vol 1221. Berlin: Springer-Verlag; 1997: 202-222.
Lenzmann, B., & Wachsmuth, I. (1997). Contract-net-based learning in a user-adaptive interface agency. In G. Weiss (Ed.), LNAI: Vol. 1221. Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments (pp. 202-222). Berlin: Springer-Verlag.
Lenzmann, Britta, and Wachsmuth, Ipke. 1997. “Contract-net-based learning in a user-adaptive interface agency”. In Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments, ed. Gerhard Weiss, 1221:202-222. LNAI. Berlin: Springer-Verlag.
Lenzmann, B., and Wachsmuth, I. (1997). “Contract-net-based learning in a user-adaptive interface agency” in Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments, Weiss, G. ed. LNAI, vol. 1221, (Berlin: Springer-Verlag), 202-222.
Lenzmann, B., & Wachsmuth, I., 1997. Contract-net-based learning in a user-adaptive interface agency. In G. Weiss, ed. Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments. LNAI. no.1221 Berlin: Springer-Verlag, pp. 202-222.
B. Lenzmann and I. Wachsmuth, “Contract-net-based learning in a user-adaptive interface agency”, Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments, G. Weiss, ed., LNAI, vol. 1221, Berlin: Springer-Verlag, 1997, pp.202-222.
Lenzmann, B., Wachsmuth, I.: Contract-net-based learning in a user-adaptive interface agency. In: Weiss, G. (ed.) Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments. LNAI. 1221, p. 202-222. Springer-Verlag, Berlin (1997).
Lenzmann, Britta, and Wachsmuth, Ipke. “Contract-net-based learning in a user-adaptive interface agency”. Distributed Artificial Intelligence Meets Machine Learning - Learning in Multi-Agent Environments. Ed. Gerhard Weiss. Berlin: Springer-Verlag, 1997.Vol. 1221. LNAI. 202-222.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:04Z
MD5 Prüfsumme
7587487007525f4c8d2377bf047a145d