The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin

Coles M, Diercks T, Muehlenweg B, Bartsch S, Zolzer V, Tschesche H, Kessler H (1999)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Coles, M; Diercks, T; Muehlenweg, B; Bartsch, S; Zolzer, V; Tschesche, HaraldUniBi; Kessler, H
Abstract / Bemerkung
Human neutrophil gelatinase-associated lipocalin (HNGAL) is a member of the lipocalin family of extracellular proteins that function as transporters of small, hydrophobic molecules. HNGAL, a component of human blood granulocytes, binds bacterially derived formyl peptides that act as chemotactic agents and induce leukocyte granule discharge. HNGAL also forms a complex with the proenzyme form of matrix metalloproteinase-9 (pro-MMP-9, or progelatinase B) via an intermolecular disulphide bridge. This association allows the subsequent formation of ternary and quaternary metalloproteinase/inhibitor complexes that vary greatly in their metalloproteinase activities. The structure and dynamics of apo-HNGAL have been determined by NMR spectroscopy. Simulated annealing calculations yielded a set of 20 convergent structures with an average backbone RMSD from mean coordinate positions of 0.79(+/-0.13) Angstrom over secondary structure elements. The overall rotational correlation time (13.3 ns) derived from N-15 relaxation data is consistent with a monomeric protein of the size of HNGAL (179 residues) under the experimental conditions (1.4 mM protein, pH 6.0, 24.5 degrees C). The structure features an eight stranded antiparallel beta-barrel, typical of the lipocalin family. One end of the barrel is open, providing access to the binding site within the barrel cavity, while the other is closed by a short 3(10)-helix. The free cysteine residue required for association with pro-MMP-9 lies in an inter-strand loop at the closed end of the barrel. The structure provides a detailed model of the ligand-binding site and has led to the proposal of a site for pro-MMP-9 association. Dynamic data correlate well with structural features, which has allowed us to investigate a mechanism by which a cell-surface receptor might distinguish between apo and holo-HNGAL through conformational changes at the open end of the barrel. (C) 1999 Academic Press.
protein structure; NMR; human neutrophil; gelatinase-associated lipocalin; protein-protein interactions; protein dynamics
Page URI


Coles M, Diercks T, Muehlenweg B, et al. The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY. 1999;289(1):139-157.
Coles, M., Diercks, T., Muehlenweg, B., Bartsch, S., Zolzer, V., Tschesche, H., & Kessler, H. (1999). The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY, 289(1), 139-157.
Coles, M, Diercks, T, Muehlenweg, B, Bartsch, S, Zolzer, V, Tschesche, Harald, and Kessler, H. 1999. “The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin”. JOURNAL OF MOLECULAR BIOLOGY 289 (1): 139-157.
Coles, M., Diercks, T., Muehlenweg, B., Bartsch, S., Zolzer, V., Tschesche, H., and Kessler, H. (1999). The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY 289, 139-157.
Coles, M., et al., 1999. The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY, 289(1), p 139-157.
M. Coles, et al., “The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin”, JOURNAL OF MOLECULAR BIOLOGY, vol. 289, 1999, pp. 139-157.
Coles, M., Diercks, T., Muehlenweg, B., Bartsch, S., Zolzer, V., Tschesche, H., Kessler, H.: The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY. 289, 139-157 (1999).
Coles, M, Diercks, T, Muehlenweg, B, Bartsch, S, Zolzer, V, Tschesche, Harald, and Kessler, H. “The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin”. JOURNAL OF MOLECULAR BIOLOGY 289.1 (1999): 139-157.

39 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Evaluation of Early Markers of Nephropathy in Patients with Type 2 Diabetes Mellitus.
De Muro P, Lepedda AJ, Nieddu G, Idini M, Tram Nguyen HQ, Lobina O, Fresu P, Formato M., Biochem Res Int 2016(), 2016
PMID: 26904288
iTRAQ-Based Proteomics Screen identifies LIPOCALIN-2 (LCN-2) as a potential biomarker for colonic lateral-spreading tumors.
Wang X, Li A, Guo Y, Wang Y, Zhao X, Xiang L, Han Z, Li Y, Xu W, Zhuang K, Yan Q, Zhong J, Xiong J, Liu S., Sci Rep 6(), 2016
PMID: 27339395
The Ligands of Neutrophil Gelatinase-Associated Lipocalin.
Bao GH, Ho CT, Barasch J., RSC Adv 5(126), 2015
PMID: 27617081
Assessment of kidney function in diabetic patients. Is there a role for new biomarkers NGAL, cystatin C and KIM-1?
Matys U, Bachorzewska-Gajewska H, Malyszko J, Dobrzycki S., Adv Med Sci 58(2), 2013
PMID: 24384771
Supporting immunoassay design with biophysical tools.
Ruan Q, Saldana SC, Grenier FC, Tetin SY., Anal Biochem 437(1), 2013
PMID: 23453975
Neutrophil roles in left ventricular remodeling following myocardial infarction.
Ma Y, Yabluchanskiy A, Lindsey ML., Fibrogenesis Tissue Repair 6(1), 2013
PMID: 23731794
The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer.
Chakraborty S, Kaur S, Guha S, Batra SK., Biochim Biophys Acta 1826(1), 2012
PMID: 22513004
Evaluation of the ARCHITECT urine NGAL assay: assay performance, specimen handling requirements and biological variability.
Grenier FC, Ali S, Syed H, Workman R, Martens F, Liao M, Wang Y, Wong PY., Clin Biochem 43(6), 2010
PMID: 20026020
A new model for mapping the peptide backbone: predicting proton chemical shifts in proteins.
Barneto JL, Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC., Org Biomol Chem 8(4), 2010
PMID: 20135044
Rapid determination of antigenic epitopes in human NGAL using NMR.
Olejniczak ET, Ruan Q, Ziemann RN, Birkenmeyer LG, Saldana SC, Tetin SY., Biopolymers 93(7), 2010
PMID: 20526991
Clinical significance of Neutrophil gelatinase-associated lipocalin(NGAL) expression in primary rectal cancer.
Zhang XF, Zhang Y, Zhang XH, Zhou SM, Yang GG, Wang OC, Guo GL, Yang GY, Hu XQ., BMC Cancer 9(), 2009
PMID: 19419554
Simple tests for the validation of multiple field spin relaxation data.
Morin S, M Gagné S., J Biomol NMR 45(4), 2009
PMID: 19842046
Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling.
Adam B, Charloteaux B, Beaufays J, Vanhamme L, Godfroid E, Brasseur R, Lins L., BMC Struct Biol 8(), 2008
PMID: 18190694
NMR structure of the pseudo-receiver domain of CikA.
Gao T, Zhang X, Ivleva NB, Golden SS, LiWang A., Protein Sci 16(3), 2007
PMID: 17322531
Model-free analysis for large proteins at high magnetic field strengths.
Chang SL, Hinck AP, Ishima R., J Biomol NMR 38(4), 2007
PMID: 17593525
Co-expression by keratinocytes of migration stimulating factor (MSF) and a functional inhibitor of its bioactivity (MSFI).
Jones SJ, Florence MM, Ellis IR, Kankova K, Schor SL, Schor AM., Exp Cell Res 313(20), 2007
PMID: 17949711
Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery.
Wagener G, Jan M, Kim M, Mori K, Barasch JM, Sladen RN, Lee HT., Anesthesiology 105(3), 2006
PMID: 16931980
Anticalins as an alternative to antibody technology.
Schlehuber S, Skerra A., Expert Opin Biol Ther 5(11), 2005
PMID: 16255649
Beta-catenin regulates the gene of MMP-26, a novel metalloproteinase expressed both in carcinomas and normal epithelial cells.
Marchenko ND, Marchenko GN, Weinreb RN, Lindsey JD, Kyshtoobayeva A, Crawford HC, Strongin AY., Int J Biochem Cell Biol 36(5), 2004
PMID: 15006646
Comparison of (13)C(alpha)H and (15)NH backbone dynamics in protein GB1.
Idiyatullin D, Nesmelova I, Daragan VA, Mayo KH., Protein Sci 12(5), 2003
PMID: 12717014
Methyl dynamics in crystalline amino acids: MD and NMR.
Chatfield DC, Augsten A, D'Cunha C, Wong SE., J Comput Chem 24(9), 2003
PMID: 12759905
Cell transformation by the v-myc oncogene abrogates c-Myc/Max-mediated suppression of a C/EBP beta-dependent lipocalin gene.
Hartl M, Matt T, Schüler W, Siemeister G, Kontaxis G, Kloiber K, Konrat R, Bister K., J Mol Biol 333(1), 2003
PMID: 14516741
The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition.
Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK., Mol Cell 10(5), 2002
PMID: 12453412
Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis.
Duan J, Dahlbäck B, Villoutreix BO., FEBS Lett 499(1-2), 2001
PMID: 11418126
Role of conserved residues in structure and stability: tryptophans of human serum retinol-binding protein, a model for the lipocalin superfamily.
Greene LH, Chrysina ED, Irons LI, Papageorgiou AC, Acharya KR, Brew K., Protein Sci 10(11), 2001
PMID: 11604536
Structural characterization of the oligosaccharide chains of human alpha1-microglobulin from urine and amniotic fluid.
Amoresano A, Minchiotti L, Cosulich ME, Campagnoli M, Pucci P, Andolfo A, Gianazza E, Galliano M., Eur J Biochem 267(7), 2000
PMID: 10727951
The lipocalin protein family: structural and sequence overview.
Flower DR, North AC, Sansom CE., Biochim Biophys Acta 1482(1-2), 2000
PMID: 11058743
Experimentally determined lipocalin structures.
Flower DR., Biochim Biophys Acta 1482(1-2), 2000
PMID: 11058746
Tick histamine-binding proteins: lipocalins with a second binding cavity.
Paesen GC, Adams PL, Nuttall PA, Stuart DL., Biochim Biophys Acta 1482(1-2), 2000
PMID: 11058751
Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse.
Kjeldsen L, Cowland JB, Borregaard N., Biochim Biophys Acta 1482(1-2), 2000
PMID: 11058768

54 References

Daten bereitgestellt von Europe PubMed Central.

Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential.
Arii S, Mise M, Harada T, Furutani M, Ishigami S, Niwano M, Mizumoto M, Fukumoto M, Imamura M., Hepatology 24(2), 1996
PMID: 8690399
Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography.
Bocskei Z, Groom CR, Flower DR, Wright CE, Phillips SE, Cavaggioni A, Findlay JB, North AC., Nature 360(6400), 1992
PMID: 1279439
Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin.
Brownlow S, Morais Cabral JH, Cooper R, Flower DR, Yewdall SJ, Polikarpov I, North AC, Sawyer L., Structure 5(4), 1997
PMID: 9115437

Brunger, 1992
Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins
Clore, J. Am. Chem. Soc 112(), 1990
Cancer. Proteases--invasion and more.
Edwards DR, Murphy G., Nature 394(6693), 1998
PMID: 9707109
Leukocyte activation in atherosclerosis: correlation with risk factors.
Elneihoum AM, Falke P, Hedblad B, Lindgarde F, Ohlsson K., Atherosclerosis 131(1), 1997
PMID: 9180248
The lipocalin protein family: structure and function.
Flower DR., Biochem. J. 318 ( Pt 1)(), 1996
PMID: 8761444
Mouse oncogene protein 24p3 is a member of the lipocalin protein family.
Flower DR, North AC, Attwood TK., Biochem. Biophys. Res. Commun. 180(1), 1991
PMID: 1834059
Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications.
Garcia de la Torre JG, Bloomfield VA., Q. Rev. Biophys. 14(1), 1981
PMID: 7025081
The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR.
Garrett DS, Kuszewski J, Hancock TJ, Lodi PJ, Vuister GW, Gronenborn AM, Clore GM., J Magn Reson B 104(1), 1994
PMID: 8025816
Measurement of fast proton exchange rates in isotopically labelled compounds
Gemmecker, J. Am. Chem. Soc 115(), 1993
Calculating the electrostatic potential of molecules in solution
Gilson, J. Comput. Chem 9(), 1988
Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 A resolution.
Huber R, Schneider M, Mayr I, Muller R, Deutzmann R, Suter F, Zuber H, Falk H, Kayser H., J. Mol. Biol. 198(3), 1987
PMID: 3430616
Measurement of intrinsic exchange rates of amide protons in a 15N-labeled peptide.
Koide S, Jahnke W, Wright PE., J. Biomol. NMR 6(3), 1995
PMID: 8520222
Progelatinase B forms from human neutrophils. complex formation of monomer/lipocalin with TIMP-1.
Kolkenbrock H, Hecker-Kia A, Orgel D, Kinawi A, Ulbrich N., Biol. Chem. 377(7-8), 1996
PMID: 8922288
The impact of direct refinement against proton chemical shifts on protein structure determination by NMR.
Kuszewski J, Gronenborn AM, Clore GM., J Magn Reson B 107(3), 1995
PMID: 7788102
PROCHECK: a program to check the stereochemical quality of protein structures.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM., J Appl Crystallogr 26(2), 1993
PMID: c6802
Automated backbone assignment of labeled proteins using the threshold accepting algorithm.
Leutner M, Gschwind RM, Liermann J, Schwarz C, Gemmecker G, Kessler H., J. Biomol. NMR 11(1), 1998
PMID: 9615996
Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity
Lipari, J. Am. Chem. Soc 104(), 1982
Raster3D Version 2.0. A program for photorealistic molecular graphics.
Merritt EA, Murphy ME., Acta Crystallogr. D Biol. Crystallogr. 50(Pt 6), 1994
PMID: 15299354
Human brain prostaglandin D synthase has been evolutionarily differentiated from lipophilic-ligand carrier proteins.
Nagata A, Suzuki Y, Igarashi M, Eguchi N, Toh H, Urade Y, Hayaishi O., Proc. Natl. Acad. Sci. U.S.A. 88(9), 1991
PMID: 1902577
The three-dimensional structure of retinol-binding protein.
Newcomer ME, Jones TA, Aqvist J, Sundelin J, Eriksson U, Rask L, Peterson PA., EMBO J. 3(7), 1984
PMID: 6540172
Processing of heteronuclear NMR relaxation data with the new software DASHA
Orekhov, Appl. Magn. Reson 9(), 1995
The anatomy and taxonomy of protein structure
Richardson, Advan. Protein Chem 34(), 1981
A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization.
Schurr JM, Babcock HP, Fujimoto BS., J Magn Reson B 105(3), 1994
PMID: 7850167
Structure-function studies on human retinol-binding protein using site-directed mutagenesis.
Sivaprasadarao A, Findlay JB., Biochem. J. 300 ( Pt 2)(), 1994
PMID: 8002949
The structure of the monomeric porcine odorant binding protein sheds light on the domain swapping mechanism.
Spinelli S, Ramoni R, Grolli S, Bonicel J, Cambillau C, Tegoni M., Biochemistry 37(22), 1998
PMID: 9609684
The role of proteolytic enzymes in the pathology of epithelial ovarian carcinoma.
Stack MS, Ellerbroek SM, Fishman DA., Int. J. Oncol. 12(3), 1998
PMID: 9472094
The transfer of retinol from serum retinol-binding protein to cellular retinol-binding protein is mediated by a membrane receptor.
Sundaram M, Sivaprasadarao A, DeSousa MM, Findlay JB., J. Biol. Chem. 273(6), 1998
PMID: 9452451
Protein dynamics studied by rotating frame 15N spin relaxation times.
Szyperski T, Luginbuhl P, Otting G, Guntert P, Wuthrich K., J. Biomol. NMR 3(2), 1993
PMID: 7682879
A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase.
Triebel S, Blaser J, Reinke H, Tschesche H., FEBS Lett. 314(3), 1992
PMID: 1281792
Crystal structure of a nitric oxide transport protein from a blood sucking insect
Weichsel, Nature Struct. Biol 5(), 1998
A role for surface hydrophobicity in protein-protein recognition.
Young L, Jernigan RL, Covell DG., Protein Sci. 3(5), 1994
PMID: 8061602
Crystal structure of liganded and unliganded forms of bovine plasma retinol-binding protein.
Zanotti G, Berni R, Monaco HL., J. Biol. Chem. 268(15), 1993
PMID: 8496140

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 10339412
PubMed | Europe PMC

Suchen in

Google Scholar