On the power method in max algebra

Elsner L, van den Driessche P (1999)
Linear Algebra and its Applications 302-303: 17-32.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
The eigenvalue problem for an irreducible nonnegative matrix A = [a(ij)] in the max algebra system is A x x = lambda x, where (A x x)(i) = max(j)(a(ij)x(j)) and lambda turns out to be the maximum circuit geometric mean, mu(A). A power method algorithm is given to compute mu(A) and eigenvector x. The algorithm is developed by using results on the convergence of max powers of A, which are proved using nonnegative matrix theory. In contrast to an algorithm developed in [4], this new method works for any irreducible nonnegative A, and calculates eigenvectors in a simpler and more efficient way. Some asymptotic formulas relating mu(A), the spectral radius and norms are also given. (C) 1999]Elsevier Science Inc. All rights reserved.
Erscheinungsjahr
Band
302-303
Seite(n)
17-32
ISSN
PUB-ID

Zitieren

Elsner L, van den Driessche P. On the power method in max algebra. Linear Algebra and its Applications. 1999;302-303:17-32.
Elsner, L., & van den Driessche, P. (1999). On the power method in max algebra. Linear Algebra and its Applications, 302-303, 17-32. doi:10.1016/S0024-3795(98)10171-4
Elsner, L., and van den Driessche, P. (1999). On the power method in max algebra. Linear Algebra and its Applications 302-303, 17-32.
Elsner, L., & van den Driessche, P., 1999. On the power method in max algebra. Linear Algebra and its Applications, 302-303, p 17-32.
L. Elsner and P. van den Driessche, “On the power method in max algebra”, Linear Algebra and its Applications, vol. 302-303, 1999, pp. 17-32.
Elsner, L., van den Driessche, P.: On the power method in max algebra. Linear Algebra and its Applications. 302-303, 17-32 (1999).
Elsner, Ludwig, and van den Driessche, Pauline. “On the power method in max algebra”. Linear Algebra and its Applications 302-303 (1999): 17-32.