Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases

Ottl J, Gabriel D, Murphy G, Knauper V, Tominaga Y, Nagase H, Kroger M, Tschesche H, Bode W, Moroder L (2000)
CHEMISTRY & BIOLOGY 7(2): 119-132.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ottl, J; Gabriel, D; Murphy, G; Knauper, V; Tominaga, Y; Nagase, H; Kroger, M; Tschesche, HaraldUniBi; Bode, W; Moroder, L
Abstract / Bemerkung
Background: The general consensus is that interstitial collagens are digested by collagenases and denatured collagen by gelatinases, although processing of fibrillar and acetic-acid-soluble collagen by gelatinase A has also been reported. One of the main difficulties in studying the mechanism of action of these matrix metalloproteinases (MMPs) derives from the physicochemical properties of the natural triple-helical collagen, which makes ii difficult to handle. Results: Synthetic heterotrimeric collagenous peptides that contain the collagenase cleavage site of human collagen type I and differ in the thermal stability of the triple-helical fold were used to mimic natural collagen and gelatin, respectively. Results from digestion of these substrates by fibroblast and neutrophil collagenases (MMP-1 and MMP-8), as well as by gelatinase A (MMP-2), confirmed that the two classes of enzymes operate within the context of strong conformational dependency of the substrates. It was also found that gelatinases and collagenases exhibit two distinct proteolytic mechanisms: gelatinase digests the gelatin-like heterotrimer rapidly in individual steps with intermediate releases of partially processed substrate into the medium, whereas collagenases degrade the triple-helical heterotrimer by trapping it until scission through all three alpha chains is achieved. Conclusions: The results confirm the usefulness of synthetic heterotrimeric collagenous peptides in the folded and unfolded state as mimics of the natural substrates collagen and gelatin, respectively, to gain a better a insight into the proteolytic mechanisms of matrix metalloproteinases.
Stichworte
synthetic; digestion; heterotrimeric substrates; collagenous peptides; MMPs; mechanisms
Erscheinungsjahr
2000
Zeitschriftentitel
CHEMISTRY & BIOLOGY
Band
7
Ausgabe
2
Seite(n)
119-132
ISSN
1074-5521
Page URI
https://pub.uni-bielefeld.de/record/1620705

Zitieren

Ottl J, Gabriel D, Murphy G, et al. Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. CHEMISTRY & BIOLOGY. 2000;7(2):119-132.
Ottl, J., Gabriel, D., Murphy, G., Knauper, V., Tominaga, Y., Nagase, H., Kroger, M., et al. (2000). Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. CHEMISTRY & BIOLOGY, 7(2), 119-132. https://doi.org/10.1016/S1074-5521(00)00077-6
Ottl, J, Gabriel, D, Murphy, G, Knauper, V, Tominaga, Y, Nagase, H, Kroger, M, Tschesche, Harald, Bode, W, and Moroder, L. 2000. “Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases”. CHEMISTRY & BIOLOGY 7 (2): 119-132.
Ottl, J., Gabriel, D., Murphy, G., Knauper, V., Tominaga, Y., Nagase, H., Kroger, M., Tschesche, H., Bode, W., and Moroder, L. (2000). Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. CHEMISTRY & BIOLOGY 7, 119-132.
Ottl, J., et al., 2000. Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. CHEMISTRY & BIOLOGY, 7(2), p 119-132.
J. Ottl, et al., “Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases”, CHEMISTRY & BIOLOGY, vol. 7, 2000, pp. 119-132.
Ottl, J., Gabriel, D., Murphy, G., Knauper, V., Tominaga, Y., Nagase, H., Kroger, M., Tschesche, H., Bode, W., Moroder, L.: Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. CHEMISTRY & BIOLOGY. 7, 119-132 (2000).
Ottl, J, Gabriel, D, Murphy, G, Knauper, V, Tominaga, Y, Nagase, H, Kroger, M, Tschesche, Harald, Bode, W, and Moroder, L. “Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases”. CHEMISTRY & BIOLOGY 7.2 (2000): 119-132.

59 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression.
Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H., J Control Release 259(), 2017
PMID: 28153760
Phosphoramidate-based peptidomimetic inhibitors of membrane type-1 matrix metalloproteinase.
Mendes DE, Wong-On-Wing A, Berkman CE., J Enzyme Inhib Med Chem 31(1), 2016
PMID: 25815671
The self-assembly of a mini-fibril with axial periodicity from a designed collagen-mimetic triple helix.
Kaur PJ, Strawn R, Bai H, Xu K, Ordas G, Matsui H, Xu Y., J Biol Chem 290(14), 2015
PMID: 25673694
The role of collagen charge clusters in the modulation of matrix metalloproteinase activity.
Lauer JL, Bhowmick M, Tokmina-Roszyk D, Lin Y, Van Doren SR, Fields GB., J Biol Chem 289(4), 2014
PMID: 24297171
Interstitial collagen catabolism.
Fields GB., J Biol Chem 288(13), 2013
PMID: 23430258
Multiphase modelling of desmoplastic tumour growth.
Psiuk-Maksymowicz K., J Theor Biol 329(), 2013
PMID: 23507339
Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis.
Bertini I, Fragai M, Luchinat C, Melikian M, Toccafondi M, Lauer JL, Fields GB., J Am Chem Soc 134(4), 2012
PMID: 22239621
The collagenolytic action of MMP-1 is regulated by the interaction between the catalytic domain and the hinge region.
Fasciglione GF, Gioia M, Tsukada H, Liang J, Iundusi R, Tarantino U, Coletta M, Pourmotabbed T, Marini S., J Biol Inorg Chem 17(4), 2012
PMID: 22407541
Defining requirements for collagenase cleavage in collagen type III using a bacterial collagen system.
Yu Z, Visse R, Inouye M, Nagase H, Brodsky B., J Biol Chem 287(27), 2012
PMID: 22573319
Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1.
Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, Murphy G, Enghild JJ, Hohenester E, Nagase H., Proc Natl Acad Sci U S A 109(31), 2012
PMID: 22761315
Macrophage-mediated degradation of crosslinked collagen scaffolds.
Yahyouche A, Zhidao X, Czernuszka JT, Clover AJ., Acta Biomater 7(1), 2011
PMID: 20709200
Hydroxyproline-containing collagen analogs trigger the release and activation of collagen-sequestered proMMP-2 by competition with prodomain-derived peptide P33-42.
Ruehl M, Muche M, Freise C, Erben U, Neumann U, Schuppan D, Popov Y, Dieterich W, Zeitz M, Farndale RW, Somasundaram R., Fibrogenesis Tissue Repair 4(1), 2011
PMID: 21211003
Increased matrix metalloproteinase-2 and bone sialoprotein response to human coronal caries.
Boushell LW, Nagaoka H, Nagaoka H, Yamauchi M., Caries Res 45(5), 2011
PMID: 21876355
Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel.
O'Leary LE, Fallas JA, Bakota EL, Kang MK, Hartgerink JD., Nat Chem 3(10), 2011
PMID: 21941256
Exosite interactions impact matrix metalloproteinase collagen specificities.
Robichaud TK, Steffensen B, Fields GB., J Biol Chem 286(43), 2011
PMID: 21896477
The interface between catalytic and hemopexin domains in matrix metalloproteinase-1 conceals a collagen binding exosite.
Arnold LH, Butt LE, Prior SH, Read CM, Fields GB, Pickford AR., J Biol Chem 286(52), 2011
PMID: 22030392
Direct visualization of protease action on collagen triple helical structure.
Rosenblum G, Van den Steen PE, Cohen SR, Bitler A, Brand DD, Opdenakker G, Sagi I., PLoS One 5(6), 2010
PMID: 20585385
Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures.
Fallas JA, O'Leary LE, Hartgerink JD., Chem Soc Rev 39(9), 2010
PMID: 20676409
Role of side chains in collagen triple helix stabilization and partner recognition.
Berisio R, De Simone A, Ruggiero A, Improta R, Vitagliano L., J Pept Sci 15(3), 2009
PMID: 19053070
Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1).
Bertini I, Fragai M, Luchinat C, Melikian M, Mylonas E, Sarti N, Svergun DI., J Biol Chem 284(19), 2009
PMID: 19282283
Identification of specific hemopexin-like domain residues that facilitate matrix metalloproteinase collagenolytic activity.
Lauer-Fields JL, Chalmers MJ, Busby SA, Minond D, Griffin PR, Fields GB., J Biol Chem 284(36), 2009
PMID: 19574232
Proteolytic cleavage of type I collagen generates an autoantigen in autoimmune uveitis.
Jha P, Manickam B, Matta B, Bora PS, Bora NS., J Biol Chem 284(45), 2009
PMID: 19755419
Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models.
Boulègue C, Musiol HJ, Götz MG, Renner C, Moroder L., Antioxid Redox Signal 10(1), 2008
PMID: 17961005
Selective modulation of matrix metalloproteinase 9 (MMP-9) functions via exosite inhibition.
Lauer-Fields JL, Whitehead JK, Li S, Hammer RP, Brew K, Fields GB., J Biol Chem 283(29), 2008
PMID: 18499673
Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences.
Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Moss ML, Fields GB., Biochemistry 46(12), 2007
PMID: 17338550
Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering.
Koide T., Philos Trans R Soc Lond B Biol Sci 362(1484), 2007
PMID: 17581806
Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis.
Si-Tayeb K, Monvoisin A, Mazzocco C, Lepreux S, Decossas M, Cubel G, Taras D, Blanc JF, Robinson DR, Rosenbaum J., Am J Pathol 169(4), 2006
PMID: 17003494
Synthesis of single- and multiple-stranded cystine-rich peptides.
Moroder L, Musiol HJ, Götz M, Renner C., Biopolymers 80(2-3), 2005
PMID: 15612050
"Uncorking" of liposomes by matrix metalloproteinase-9.
Sarkar NR, Rosendahl T, Krueger AB, Banerjee AL, Benton K, Mallik S, Srivastava DK., Chem Commun (Camb) (8), 2005
PMID: 15719095
Structure of the integrin alpha2beta1-binding collagen peptide.
Emsley J, Knight CG, Farndale RW, Barnes MJ., J Mol Biol 335(4), 2004
PMID: 14698296
Characterization of collagen-like heterotrimers: implications for triple-helix stability.
Berisio R, Granata V, Vitagliano L, Zagari A., Biopolymers 73(6), 2004
PMID: 15048771
Collagen degradation in endodontically treated teeth after clinical function.
Ferrari M, Mason PN, Goracci C, Pashley DH, Tay FR., J Dent Res 83(5), 2004
PMID: 15111635
Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis.
Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H., EMBO J 23(15), 2004
PMID: 15257288
Analysis of matrix metalloproteinase triple-helical peptidase activity with substrates incorporating fluorogenic L- or D-amino acids.
Lauer-Fields JL, Kele P, Sui G, Nagase H, Leblanc RM, Fields GB., Anal Biochem 321(1), 2003
PMID: 12963061
Matrix metalloproteinases and collagen catabolism.
Lauer-Fields JL, Juska D, Fields GB., Biopolymers 66(1), 2002
PMID: 12228918
Triple-helical peptide analysis of collagenolytic protease activity.
Lauer-Fields JL, Fields GB., Biol Chem 383(7-8), 2002
PMID: 12437092
Survey of the year 2000 commercial optical biosensor literature.
Rich RL, Myszka DG., J Mol Recognit 14(5), 2001
PMID: 11746948
Collagen model peptides: Sequence dependence of triple-helix stability.
Persikov AV, Ramshaw JA, Brodsky B., Biopolymers 55(6), 2000
PMID: 11304671

90 References

Daten bereitgestellt von Europe PubMed Central.

The molecular structure of collagen.
RICH A, CRICK FH., J. Mol. Biol. 3(), 1961
PMID: 14491907
Chain conformation in the collagen molecule.
Fraser RD, MacRae TP, Suzuki E., J. Mol. Biol. 129(3), 1979
PMID: 458854

AUTHOR UNKNOWN, 0
The family of matrix metalloproteinases
Woessner, Ann. NY Acad. Sci. 732(), 1994
Matrix metalloproteinases and the development of cancer.
Coussens LM, Werb Z., Chem. Biol. 3(11), 1996
PMID: 8939708
Matrix metalloproteinases and TIMPs: properties and implications for the rheumatic diseases
Cawston, Mol. Med. Today 8(), 1998
Matrix metalloproteases: variations on a theme.
Borkakoti N., Prog. Biophys. Mol. Biol. 70(1), 1998
PMID: 9785958
Matrix metalloproteinases.
Johnson LL, Dyer R, Hupe DJ., Curr Opin Chem Biol 2(4), 1998
PMID: 9736919
Matrix metalloproteinases.
Nagase H, Woessner JF Jr., J. Biol. Chem. 274(31), 1999
PMID: 10419448
The collagen substrate specificity of human skin fibroblast collagenase.
Welgus HG, Jeffrey JJ, Eisen AZ., J. Biol. Chem. 256(18), 1981
PMID: 6270089
The collagen substrate specificity of human neutrophil collagenase.
Hasty KA, Jeffrey JJ, Hibbs MS, Welgus HG., J. Biol. Chem. 262(21), 1987
PMID: 3038863
Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides
Nagase, Biopol. Pept. Sci. 40(), 1996
Biochemical characterization of human collagenase-3.
Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G., J. Biol. Chem. 271(3), 1996
PMID: 8576151
Gelatinases A and B.
Murphy G, Crabbe T., Meth. Enzymol. 248(), 1995
PMID: 7674939
The collagen triple-helix: correlation of conformation with biological activities
Fields, Connect. Tissue Res. 3(), 1995
Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein.
Goldberg GI, Wilhelm SM, Kronberger A, Bauer EA, Grant GA, Eisen AZ., J. Biol. Chem. 261(14), 1986
PMID: 3009463
Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases.
Hasty KA, Pourmotabbed TF, Goldberg GI, Thompson JP, Spinella DG, Stevens RM, Mainardi CL., J. Biol. Chem. 265(20), 1990
PMID: 2164002
Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas.
Freije JM, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J, Lopez-Otin C., J. Biol. Chem. 269(24), 1994
PMID: 8207000
Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules.
Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y., J. Biol. Chem. 272(4), 1997
PMID: 8999957
Fragments of human fibroblast collagenase. Purification and characterization.
Clark IM, Cawston TE., Biochem. J. 263(1), 1989
PMID: 2557822
The recombinant catalytic domain of human neutrophil collagenase lacks type I collagen substrate specificity.
Schnierer S, Kleine T, Gote T, Hillemann A, Knauper V, Tschesche H., Biochem. Biophys. Res. Commun. 191(2), 1993
PMID: 8460992
Fragmentation of human polymorphonuclear-leucocyte collagenase.
Knauper V, Osthues A, DeClerck YA, Langley KE, Blaser J, Tschesche H., Biochem. J. 291 ( Pt 3)(), 1993
PMID: 8489511
Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor
Borkakoti, Nat. Struct. Biol. 1(), 1994
Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor.
Lovejoy B, Cleasby A, Hassell AM, Longley K, Luther MA, Weigl D, McGeehan G, McElroy AB, Drewry D, Lambert MH., Science 263(5145), 1994
PMID: 8278810
1.56 A structure of mature truncated human fibroblast collagenase.
Spurlino JC, Smallwood AM, Carlton DD, Banks TM, Vavra KJ, Johnson JS, Cook ER, Falvo J, Wahl RC, Pulvino TA., Proteins 19(2), 1994
PMID: 8090713
Structure of human neutrophil collagenase reveals large S1' specificity pocket.
Stams T, Spurlino JC, Smith DL, Wahl RC, Ho TF, Qoronfleh MW, Banks TM, Rubin B., Nat. Struct. Biol. 1(2), 1994
PMID: 7656015
Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme.
Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD., Protein Sci. 4(10), 1995
PMID: 8535233
X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily.
Dhanaraj V, Ye QZ, Johnson LL, Hupe DJ, Ortwine DF, Dunbar JB Jr, Rubin JR, Pavlovsky A, Humblet C, Blundell TL., Structure 4(4), 1996
PMID: 8740360
Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1.
Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov GP, Bartunik H, Bode W., Nature 389(6646), 1997
PMID: 9288970
Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor.
Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K., EMBO J. 17(17), 1998
PMID: 9724659
Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors.
Lovejoy B, Welch AR, Carr S, Luong C, Broka C, Hendricks RT, Campbell JA, Walker KA, Martin R, Van Wart H, Browner MF., Nat. Struct. Biol. 6(3), 1999
PMID: 10074939
Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller.
Li J, Brick P, O'Hare MC, Skarzynski T, Lloyd LF, Curry VA, Clark IM, Bigg HF, Hazleman BL, Cawston TE., Structure 3(6), 1995
PMID: 8590015
Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed.
Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K., Science 284(5420), 1999
PMID: 10356396
The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function.
Gohlke U, Gomis-Ruth FX, Crabbe T, Murphy G, Docherty AJ, Bode W., FEBS Lett. 378(2), 1996
PMID: 8549817
Crystal structure of the haemopexin-like C-terminal domain of gelatinase A.
Libson AM, Gittis AG, Collier IE, Marmer BL, Goldberg GI, Lattman EE., Nat. Struct. Biol. 2(11), 1995
PMID: 7583664
The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain.
Gomis-Ruth FX, Gohlke U, Betz M, Knauper V, Murphy G, Lopez-Otin C, Bode W., J. Mol. Biol. 264(3), 1996
PMID: 8969305
Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity.
Hirose T, Patterson C, Pourmotabbed T, Mainardi CL, Hasty KA., Proc. Natl. Acad. Sci. U.S.A. 90(7), 1993
PMID: 8464863
The role of the C-terminal domain in collagenase and stromelysin specificity.
Murphy G, Allan JA, Willenbrock F, Cockett MI, O'Connell JP, Docherty AJ., J. Biol. Chem. 267(14), 1992
PMID: 1315762
Evidence for a triple helix recognition site in the hemopexin-like domains of human fibroblast and neutrophil interstitial collagenases
Netzel-Arnett, Ann. New York Acad. Sci 732(), 1993
Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot. Models for collagen catabolism by matrix-metalloproteases.
Ottl J, Battistuta R, Pieper M, Tschesche H, Bode W, Kuhn K, Moroder L., FEBS Lett. 398(1), 1996
PMID: 8946948
Assembly of multiple-chain polypeptide suprastructures with artificial cystine-knots
Ottl, Tetrahedron Lett. 40(), 1999
Generation of collagenase-resistant collagen by site-directed mutagenesis of murine pro alpha 1(I) collagen gene.
Wu H, Byrne MH, Stacey A, Goldring MB, Birkhead JR, Jaenisch R, Krane SM., Proc. Natl. Acad. Sci. U.S.A. 87(15), 1990
PMID: 2165607
A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling.
Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R., J. Cell Biol. 130(1), 1995
PMID: 7790374
Disulfide-bridged heterotrimeric collagen peptides containing the collagenase cleavage site of collagen type I. Synthesis and conformational properties
Ottl, J. Am. Chem. Soc. 121(), 1999
The gelatinolytic activity of human skin fibroblast collagenase.
Welgus HG, Jeffrey JJ, Stricklin GP, Eisen AZ., J. Biol. Chem. 257(19), 1982
PMID: 6288690
Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant.
Murphy G, Nguyen Q, Cockett MI, Atkinson SJ, Allan JA, Knight CG, Willenbrock F, Docherty AJ., J. Biol. Chem. 269(9), 1994
PMID: 8120015
Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology.
Jonsson U, Fagerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Lofas S, Persson B, Roos H, Ronnberg I., BioTechniques 11(5), 1991
PMID: 1804254
Kinetic and concentration analysis using BIA technology
Karlsson, Methods: Comp. Meth. Enzymol. 6(), 1994
Matrix metalloproteinases: a review.
Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA., Crit. Rev. Oral Biol. Med. 4(2), 1993
PMID: 8435466
Binding of gelatinases A and B to type-I collagen and other matrix components.
Allan JA, Docherty AJ, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G., Biochem. J. 309 ( Pt 1)(), 1995
PMID: 7619071
Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV collagenase.
Collier IE, Krasnov PA, Strongin AY, Birkedal-Hansen H, Goldberg GI., J. Biol. Chem. 267(10), 1992
PMID: 1313021
The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A).
Banyai L, Tordai H, Patthy L., Biochem. J. 298 ( Pt 2)(), 1994
PMID: 8135748
The gelatin-binding site of the second type-II domain of gelatinase A/MMP-2.
Tordai H, Patthy L., Eur. J. Biochem. 259(1-2), 1999
PMID: 9914534

AUTHOR UNKNOWN, 0
On the structure-function relationship of polymorphonuclear-leukocyte collagenase
de, Biochem. J. 300(), 1994
Collagen/collagenase interaction: does the enzyme mimic the conformation of its own substrate?
De Souza SJ, Pereira HM, Jacchieri S, Brentani RR., FASEB J. 10(8), 1996
PMID: 8666171
Patterns of hydration in crystalline collagen peptides
Kramer, J. Biomol. Structure Dynamics 16(), 1998
TurboFRODO
Roussel, 1989
X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design.
Grams F, Reinemer P, Powers JC, Kleine T, Pieper M, Tschesche H, Huber R, Bode W., Eur. J. Biochem. 228(3), 1995
PMID: 7737183

Brünger, 1992
Structure of 20S proteasome from yeast at 2.4 A resolution.
Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R., Nature 386(6624), 1997
PMID: 9087403
Human beta-tryptase is a ring-like tetramer with active sites facing a central pore.
Pereira PJ, Bergner A, Macedo-Ribeiro S, Huber R, Matschiner G, Fritz H, Sommerhoff CP, Bode W., Nature 392(6673), 1998
PMID: 9521329
Sequence dependent conformational variations of collagen triple-helical structure.
Kramer RZ, Bella J, Mayville P, Brodsky B, Berman HM., Nat. Struct. Biol. 6(5), 1999
PMID: 10331873
Human neutrophil collagenase.
Tschesche H., Meth. Enzymol. 248(), 1995
PMID: 7674936
Mutation of the active site glutamic acid of human gelatinase A: effects on latency, catalysis, and the binding of tissue inhibitor of metalloproteinases-1.
Crabbe T, Zucker S, Cockett MI, Willenbrock F, Tickle S, O'Connell JP, Scothern JM, Murphy G, Docherty AJ., Biochemistry 33(21), 1994
PMID: 7911325
Activation of human neutrophil procollagenase by stromelysin 2.
Knauper V, Murphy G, Tschesche H., Eur. J. Biochem. 235(1-2), 1996
PMID: 8631328
Expression of human pro-matrix metalloproteinase 3 that lacks the N-terminal 34 residues in Escherichia coli: autoactivation and interaction with tissue inhibitor of metalloproteinase 1 (TIMP-1)
Suzuki, J. Biol. Chem. 379(), 1997

AUTHOR UNKNOWN, 0
Acetyl-terminated and template-assembled collagen-based polypeptides composed of Gly-Pro-Hyp sequences. 2. Synthesis and conformational analysis by circular dichroism, ultraviolet absorbance and optical rotation
Feng, J. Am. Chem. Soc. 118(), 1996
Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin).
Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H., Biochemistry 29(44), 1990
PMID: 2176865
Direct activation of human neutrophil procollagenase by recombinant stromelysin.
Knauper V, Wilhelm SM, Seperack PK, DeClerck YA, Langley KE, Osthues A, Tschesche H., Biochem. J. 295 ( Pt 2)(), 1993
PMID: 8240261
A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding
Bradford, Anal. Biochem. 72(), 1976
A novel hydrogel matrix on gold surfaces in surface plasmon resonace sensors for fast and efficient covalent immobilization of ligands
Löfas, J. Chem. Soc. Chem. Commun. 102(), 1990
GRASP: graphical presentation and analysis of surface properties. XXXVII. Annual Meeting of the Biophysical Society, Washington D.C., USA, February 14-18, 1993
Nicholls, Biophys. J. 64(), 1993
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10662694
PubMed | Europe PMC

Suchen in

Google Scholar