Phosphatidylglycerol is involved in the dimerization of photosystem II

Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH, Barber J (2000)
JOURNAL OF BIOLOGICAL CHEMISTRY 275(9): 6509-6514.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kruse, OlafUniBi ; Hankamer, B; Konczak, C; Gerle, C; Morris, E; Radunz, A; Schmid, GH; Barber, J
Abstract / Bemerkung
Photosystem II core dimers (450 kDa) and monomers (230 kDa) consisting of CP47, CP43, the D1 and D2 proteins, the extrinsic 33-kDa subunit, and the low molecular weight polypeptides PsbE, PsbF, PsbH, PsbI, PsbK, PsbL, PshTc, and PsbW were isolated by sucrose density gradient centrifugation. The photosystem II core dimers were treated with phospholipase A2 (PL-A2), which cuts phosphatidylglycerol (PG) and phosphatidylcholine molecules at the sn-2 position. The PL-A2-treated dimers dissociated into two core monomers and further, yielding a CP47-D1-D2 subcomplex and CP43. Thin layer chromatography showed that photosystem II dimers contained four times more PG than their monomeric counterparts but with similar levels of phosphatidylcholine. Consistent with this was the finding that, compared with monomers, the dimers contained a higher level of trans-hexadecanoic fatty acid (C16:1 Delta 3tr), which is specific to PG of the thylakoid membrane. Moreover, treatment of dimers with PL-A2 increased the free level of this fatty acid specific to PG compared with untreated dimers. Further evidence that PG is involved in stabilizing the dimeric state of photosystem II comes from reconstitution experiments. Using size exclusion chromatography, it was shown that PG containing C16:1 Delta 3tr, but not other lipid classes, induced significant dimerization of isolated photosystem II monomers. Moreover, this dimerization was observed by electron crystallography when monomers were reconstituted into thylakoid lipids containing PG. The unit cell parameters, p2 symmetry axis, and projection map of the reconstituted dimer was similar to that observed for two dimensional crystals of the native dimer.
Erscheinungsjahr
2000
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
275
Ausgabe
9
Seite(n)
6509-6514
ISSN
0021-9258
Page URI
https://pub.uni-bielefeld.de/record/1620539

Zitieren

Kruse O, Hankamer B, Konczak C, et al. Phosphatidylglycerol is involved in the dimerization of photosystem II. JOURNAL OF BIOLOGICAL CHEMISTRY. 2000;275(9):6509-6514.
Kruse, O., Hankamer, B., Konczak, C., Gerle, C., Morris, E., Radunz, A., Schmid, G. H., et al. (2000). Phosphatidylglycerol is involved in the dimerization of photosystem II. JOURNAL OF BIOLOGICAL CHEMISTRY, 275(9), 6509-6514. https://doi.org/10.1074/jbc.275.9.6509
Kruse, Olaf, Hankamer, B, Konczak, C, Gerle, C, Morris, E, Radunz, A, Schmid, GH, and Barber, J. 2000. “Phosphatidylglycerol is involved in the dimerization of photosystem II”. JOURNAL OF BIOLOGICAL CHEMISTRY 275 (9): 6509-6514.
Kruse, O., Hankamer, B., Konczak, C., Gerle, C., Morris, E., Radunz, A., Schmid, G. H., and Barber, J. (2000). Phosphatidylglycerol is involved in the dimerization of photosystem II. JOURNAL OF BIOLOGICAL CHEMISTRY 275, 6509-6514.
Kruse, O., et al., 2000. Phosphatidylglycerol is involved in the dimerization of photosystem II. JOURNAL OF BIOLOGICAL CHEMISTRY, 275(9), p 6509-6514.
O. Kruse, et al., “Phosphatidylglycerol is involved in the dimerization of photosystem II”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, 2000, pp. 6509-6514.
Kruse, O., Hankamer, B., Konczak, C., Gerle, C., Morris, E., Radunz, A., Schmid, G.H., Barber, J.: Phosphatidylglycerol is involved in the dimerization of photosystem II. JOURNAL OF BIOLOGICAL CHEMISTRY. 275, 6509-6514 (2000).
Kruse, Olaf, Hankamer, B, Konczak, C, Gerle, C, Morris, E, Radunz, A, Schmid, GH, and Barber, J. “Phosphatidylglycerol is involved in the dimerization of photosystem II”. JOURNAL OF BIOLOGICAL CHEMISTRY 275.9 (2000): 6509-6514.

68 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Structural roles of lipid molecules in the assembly of plant PSII-LHCII supercomplex.
Sheng X, Liu X, Cao P, Li M, Liu Z., Biophys Rep 4(4), 2018
PMID: 30310856
Identification and characterization of a plastidial phosphatidylglycerophosphate phosphatase in Arabidopsis thaliana.
Zhou Y, Hölzl G, Vom Dorp K, Peisker H, Melzer M, Frentzen M, Dörmann P., Plant J 89(2), 2017
PMID: 27614107
Lipid and carotenoid cooperation-driven adaptation to light and temperature stress in Synechocystis sp. PCC6803.
Zakar T, Herman E, Vajravel S, Kovacs L, Knoppová J, Komenda J, Domonkos I, Kis M, Gombos Z, Laczko-Dobos H., Biochim Biophys Acta Bioenerg 1858(5), 2017
PMID: 28188782
Specific roles of phosphatidylglycerols in hosts and microbes.
Dugail I, Kayser BD, Lhomme M., Biochimie 141(), 2017
PMID: 28483688
Prediction of Thylakoid Lipid Binding Sites on Photosystem II.
Van Eerden FJ, Melo MN, Frederix PWJM, Marrink SJ., Biophys J 113(12), 2017
PMID: 29262360
Delipidation of cytochrome c oxidase from Rhodobacter sphaeroides destabilizes its quaternary structure.
Musatov A, Varhač R, Hosler JP, Sedlák E., Biochimie 125(), 2016
PMID: 26923069
Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae.
Shin H, Hong SJ, Yoo C, Han MA, Lee H, Choi HK, Cho S, Lee CG, Cho BK., Sci Rep 6(), 2016
PMID: 27883062
Sll0751 and Sll1041 are involved in acid stress tolerance in Synechocystis sp. PCC 6803.
Tahara H, Matsuhashi A, Uchiyama J, Ogawa S, Ohta H., Photosynth Res 125(1-2), 2015
PMID: 25952746
Impact of UV-B on drought- or cadmium-induced changes in the fatty acid composition of membrane lipid fractions in wheat.
Gondor OK, Szalai G, Kovács V, Janda T, Pál M., Ecotoxicol Environ Saf 108(), 2014
PMID: 25062444
Distinct effects of different phosphatidylglycerol species on mouse keratinocyte proliferation.
Xie D, Seremwe M, Edwards JG, Podolsky R, Bollag WB., PLoS One 9(9), 2014
PMID: 25233484
Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy.
Galindo González LM, El Kayal W, Ju CJ, Allen CC, King-Jones S, Cooke JE., Plant Cell Environ 35(4), 2012
PMID: 21988609
Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in Chlamydomonas.
Nordhues A, Schöttler MA, Unger AK, Geimer S, Schönfelder S, Schmollinger S, Rütgers M, Finazzi G, Soppa B, Sommer F, Mühlhaus T, Roach T, Krieger-Liszkay A, Lokstein H, Crespo JL, Schroda M., Plant Cell 24(2), 2012
PMID: 22307852
Lipids in photosystem II: multifunctional cofactors.
Kern J, Guskov A., J Photochem Photobiol B 104(1-2), 2011
PMID: 21481601
Phosphatidylglycerol depletion affects photosystem II activity in Synechococcus sp. PCC 7942 cells.
Bogos B, Ughy B, Domonkos I, Laczkó-Dobos H, Komenda J, Abasova L, Cser K, Vass I, Sallai A, Wada H, Gombos Z., Photosynth Res 103(1), 2010
PMID: 19763873
Recent advances in understanding the assembly and repair of photosystem II.
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J., Ann Bot 106(1), 2010
PMID: 20338950
Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-a resolution.
Broser M, Gabdulkhakov A, Kern J, Guskov A, Müh F, Saenger W, Zouni A., J Biol Chem 285(34), 2010
PMID: 20558739
Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride.
Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W., Nat Struct Mol Biol 16(3), 2009
PMID: 19219048
Is the photosystem II complex a monomer or a dimer?
Watanabe M, Iwai M, Narikawa R, Ikeuchi M., Plant Cell Physiol 50(9), 2009
PMID: 19667103
Effect of phosphatidylglycerol depletion on the surface electric properties and the fluorescence emission of thylakoid membranes.
Apostolova EL, Domonkos I, Dobrikova AG, Sallai A, Bogos B, Wada H, Gombos Z, Taneva SG., J Photochem Photobiol B 91(1), 2008
PMID: 18343150
Solubilization of membrane protein complexes for blue native PAGE.
Reisinger V, Eichacker LA., J Proteomics 71(3), 2008
PMID: 18573355
Focus on the aggregation processes of Photosystem II complexes.
Ventrella A, Catucci L, Villari V, Scolaro LM, Agostiano A., Bioelectrochemistry 70(1), 2007
PMID: 16730478
Multiple sites of retardation of electron transfer in Photosystem II after hydrolysis of phosphatidylglycerol.
Kim EH, Razeghifard R, Anderson JM, Chow WS., Photosynth Res 93(1-3), 2007
PMID: 17235490
The essential role of phosphatidylglycerol in photosynthesis.
Wada H, Murata N., Photosynth Res 92(2), 2007
PMID: 17634751
Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.
Janda T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP., Phytochemistry 68(12), 2007
PMID: 17537468
Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants.
Sakurai I, Shen JR, Leng J, Ohashi S, Kobayashi M, Wada H., J Biochem 140(2), 2006
PMID: 16822813
Effect of phosphatidylglycerol on molecular organization of photosystem I.
Yang Z, Su X, Wu F, Gong Y, Kuang T., Biophys Chem 115(1), 2005
PMID: 15848280
Photochemical activities of plant photosystem I particles reconstituted into phosphatidylglycerol liposomes.
Yang Z, Su X, Wu F, Gong Y, Kuang T., J Photochem Photobiol B 78(2), 2005
PMID: 15664499
Proteins, chlorophylls and lipids: X-ray analysis of a three-way relationship.
Fyfe PK, Hughes AV, Heathcote P, Jones MR., Trends Plant Sci 10(6), 2005
PMID: 15949761
A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii.
Pineau B, Girard-Bascou J, Eberhard S, Choquet Y, Trémolières A, Gérard-Hirne C, Bennardo-Connan A, Decottignies P, Gillet S, Wollman FA., Eur J Biochem 271(2), 2004
PMID: 14717700
Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center.
Domonkos I, Malec P, Sallai A, Kovács L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T, Gombos Z., Plant Physiol 134(4), 2004
PMID: 15064373
Enrichment of cardiolipin content throughout the purification procedure of photosystem II.
Depalo N, Catucci L, Mallardi A, Corcelli A, Agostiano A., Bioelectrochemistry 63(1-2), 2004
PMID: 15110257
Effects of phosphate deficiency on the lipid composition in cucumber thylakoid membranes and PSII particles.
Yang W, Liu S, Feng F, Hou H, Jiang G, Xu Y, Kuang T., Plant Sci 166(6), 2004
PMID: IND43636277
PSII-Tc protein plays an important role in dimerization of photosystem II.
Iwai M, Katoh H, Katayama M, Ikeuchi M., Plant Cell Physiol 45(12), 2004
PMID: 15653799
FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803.
Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ., Plant Cell 15(9), 2003
PMID: 12953117
Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery.
Sakurai I, Hagio M, Gombos Z, Tyystjarvi T, Paakkarinen V, Aro EM, Wada H., Plant Physiol 133(3), 2003
PMID: 14551333
Photosystem II solubilizes as a monomer by mild detergent treatment of unstacked thylakoid membranes.
Dekker JP, Germano M, van Roon H, Boekema EJ., Photosynth Res 72(2), 2002
PMID: 16228518
Role of sulfoquinovosyl diacylglycerol for the maintenance of photosystem II in Chlamydomonas reinhardtii.
Minoda A, Sato N, Nozaki H, Okada K, Takahashi H, Sonoike K, Tsuzuki M., Eur J Biochem 269(9), 2002
PMID: 11985618
The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity.
Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C, Benning C., Plant Physiol 129(2), 2002
PMID: 12068104
Structural and functional dynamics of plant photosystem II.
Anderson JM, Chow WS., Philos Trans R Soc Lond B Biol Sci 357(1426), 2002
PMID: 12437881
Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana.
Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H., Plant Cell Physiol 43(12), 2002
PMID: 12514242
Does functional photosystem II complex have an oxygen channel?
Anderson JM., FEBS Lett 488(1-2), 2001
PMID: 11163784
Response of Tradescantia albiflora to growth irradiance: Change versus changeability.
Anderson JM, Soon Chow W, Park YI, Franklin LA, Robinson SP, van Hasselt PR., Photosynth Res 67(1-2), 2001
PMID: 16228320
Subunit positioning and transmembrane helix organisation in the core dimer of photosystem II.
Hankamer B, Morris E, Nield J, Carne A, Barber J., FEBS Lett 504(3), 2001
PMID: 11532446
Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana.
Yakushevska AE, Jensen PE, Keegstra W, van Roon H, Scheller HV, Boekema EJ, Dekker JP., Eur J Biochem 268(23), 2001
PMID: 11732995
Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis.
Hagio M, Gombos Z, Várkonyi Z, Masamoto K, Sato N, Tsuzuki M, Wada H., Plant Physiol 124(2), 2000
PMID: 11027727
Supermolecular structure of photosystem II and location of the PsbS protein.
Nield J, Funk C, Barber J., Philos Trans R Soc Lond B Biol Sci 355(1402), 2000
PMID: 11127988

54 References

Daten bereitgestellt von Europe PubMed Central.

Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans.
Iwata S, Ostermeier C, Ludwig B, Michel H., Nature 376(6542), 1995
PMID: 7651515
The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A.
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S., Science 272(5265), 1996
PMID: 8638158
Crystallization and preliminary structure of beef heart mitochondrial cytochrome-bc1 complex.
Yu CA, Xia JZ, Kachurin AM, Yu L, Xia D, Kim H, Deisenhofer J., Biochim. Biophys. Acta 1275(1-2), 1996
PMID: 8688450
Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria.
Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J., Science 277(5322), 1997
PMID: 9204897
The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer.
Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB., J. Biol. Chem. 270(21), 1995
PMID: 7759498
The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. Correlation with binding to LFA-1.
Reilly PL, Woska JR Jr, Jeanfavre DD, McNally E, Rothlein R, Bormann BJ., J. Immunol. 155(2), 1995
PMID: 7608533
Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system.
Krauss N, Schubert WD, Klukas O, Fromme P, Witt HT, Saenger W., Nat. Struct. Biol. 3(11), 1996
PMID: 8901876
Atomic model of plant light-harvesting complex by electron crystallography.
Kuhlbrandt W, Wang DN, Fujiyoshi Y., Nature 367(6464), 1994
PMID: 8107845
STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS.
Hankamer B, Barber J, Boekema EJ., Annu. Rev. Plant Physiol. Plant Mol. Biol. 48(), 1997
PMID: 15012277
Three-dimensional structure of the higher-plant photosystem II reaction centre and evidence for its dimeric organization in vivo.
Santini C, Tidu V, Tognon G, Ghiretti Magaldi A, Bassi R., Eur. J. Biochem. 221(1), 1994
PMID: 8168519
Supramolecular structure of the photosystem II complex from green plants and cyanobacteria.
Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rogner M., Proc. Natl. Acad. Sci. U.S.A. 92(1), 1995
PMID: 7816811
The three-dimensional structure of a photosystem II core complex determined by electron crystallography.
Morris EP, Hankamer B, Zheleva D, Friso G, Barber J., Structure 5(6), 1997
PMID: 9261075

AUTHOR UNKNOWN, 0
Multiple crystal types reveal photosystem II to be a dimer.
Lyon MK., Biochim. Biophys. Acta 1364(3), 1998
PMID: 9630730

Peter, Plant Cell Phys. 32(), 1991
Photoinhibition of Photosystem II. Inactivation, protein damage and turnover.
Aro EM, Virgin I, Andersson B., Biochim. Biophys. Acta 1143(2), 1993
PMID: 8318516
Structural changes and lateral redistribution of photosystem II during donor side photoinhibition of thylakoids.
Barbato R, Friso G, Rigoni F, Dalla Vecchia F, Giacometti GM., J. Cell Biol. 119(2), 1992
PMID: 1400577

AUTHOR UNKNOWN, 0

Fragata, Trends Photochem. Photobiol. 3(), 1994

AUTHOR UNKNOWN, 0

Kruse, Z. Naturforsch. 50c(), 1995

AUTHOR UNKNOWN, 0
Lipid-protein interactions in crystals of plant light-harvesting complex.
Nussberger S, Dorr K, Wang DN, Kuhlbrandt W., J. Mol. Biol. 234(2), 1993
PMID: 8230219
Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex.
Hobe S, Prytulla S, Kuhlbrandt W, Paulsen H., EMBO J. 13(15), 1994
PMID: 8062818

AUTHOR UNKNOWN, 0

Radunz, Z. Naturforsch. 31c(), 1976
Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy.
Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH., J. Mol. Biol. 213(4), 1990
PMID: 2359127

AUTHOR UNKNOWN, 0
Isolation and characterization of monomeric and dimeric CP47-reaction center photosystem II complexes.
Zheleva D, Sharma J, Panico M, Morris HR, Barber J., J. Biol. Chem. 273(26), 1998
PMID: 9632665
Spin-label ESR studies of lipid-protein interactions in thylakoid membranes.
Li G, Knowles PF, Murphy DJ, Nishida I, Marsh D., Biochemistry 28(18), 1989
PMID: 2554971

AUTHOR UNKNOWN, 0

Kruse, Z. Naturforsch. 49c(), 1994
Phosphorylation controls the three-dimensional structure of plant light harvesting complex II.
Nilsson A, Stys D, Drakenberg T, Spangfort MD, Forsen S, Allen JF., J. Biol. Chem. 272(29), 1997
PMID: 9218476
Requirement for the H phosphoprotein in photosystem II of Chlamydomonas reinhardtii.
Summer EJ, Schmid VH, Bruns BU, Schmidt GW., Plant Physiol. 113(4), 1997
PMID: 9112780

AUTHOR UNKNOWN, 0
Analysis of Photosynthetic Antenna Function in a Mutant of Arabidopsis thaliana (L.) Lacking trans-Hexadecenoic Acid.
McCourt P, Browse J, Watson J, Arntzen CJ, Somerville CR., Plant Physiol. 78(4), 1985
PMID: 16664340
Electron-crystallographic refinement of the structure of bacteriorhodopsin.
Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R., J. Mol. Biol. 259(3), 1996
PMID: 8676377

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10692455
PubMed | Europe PMC

Suchen in

Google Scholar