Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers

Werner A, Duvar S, Müthing J, Büntemeyer H, Lunsdorf H, Strauss M, Lehmann J (2000)
BIOTECHNOLOGY AND BIOENGINEERING 68(1): 59-70.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Werner, A; Duvar, S; Müthing, JohannesUniBi; Büntemeyer, HeinoUniBi; Lunsdorf, H; Strauss, M; Lehmann, J
Abstract / Bemerkung
Cultivation of the new immortalized hepatocyte cell line HepZ was performed with a 1:1 mixture of DMEM and Ham's F12 media containing 5% FCS. The cells were grown in their 40th passage in 100 mL and 1 L volumes in spinner flasks and in a bioreactor, respectively. For the production of adherently growing HepZ cells macroporous CultiSpher G gelatin microcarriers were used in various concentrations from 1 to 3 g/L. The cells were seeded in a density of 2 x 10(5) cells/mL when using a microcarrier concentration of 1 g/L and 5 x 10(5) cells/mL at a microcarrier concentration of 3 g/L. After 7 days of cultivation a maximum cell concentration of 4.5 x 10(6) cells/mL was obtained in the spinner culture using a microcarrier concentration of 1 g/L. With bubble-free aeration and daily medium exchange from day 7, 7.1 x 10(6) cells/mL were achieved in the bioreactor using a microcarrier concentration of 3 g/L. The cells exhibited a maximum specific growth rate of 0.84 per day in the spinner system and 1.0 per day in the bioreactor, respectively. During the growth phase the lactate dehydrogenase (LDH) activity rose slightly up to values of 200 U/L. At the end of cultivation the macroporous carriers were completely filled with cells exhibiting a spherical morphology whereas the hepatocytes on the outer surface were flat-shaped. Concerning their metabolic activity the cells predominantly consumed glutamine and glucose. During the growth phase lactate was produced up to 19.3 mM in the spinner culture and up to 9.1 mM in the bioreactor. Maximal oxygen consumption was 1950 nmol/(10(6) cells day). HepZ cells resisted a 4-day long chilling period at 9.5 degrees C. The cytochrome P450 system was challenged with a pulse of 7 mu g/mL lidocaine at a cell density of 4.5 x 10(6) cells/mL. Five ng/mL monoethylglycinexylidide (MEGX) was generated within 1 day without phenobarbital induction compared to 26 ng/mL after a preceded three day induction period with 50 mu g/mL of phenobarbital indicating hepatic potency. Thus, the new immortalized HepZ cell line, exhibiting primary meta-belie functions and appropriate for a mass cell cultivation, suggests its application for a bioartificial liver support system. (C) 2000 John Wiley & Sons, Inc.
Stichworte
oxygen; stirred bioreactor; spinner cultivation; bioartificial liver; immortalized hepatocytes; cell line; consumption; amino acid metabolism; hypothermia
Erscheinungsjahr
2000
Zeitschriftentitel
BIOTECHNOLOGY AND BIOENGINEERING
Band
68
Ausgabe
1
Seite(n)
59-70
ISSN
0006-3592
eISSN
1097-0290
Page URI
https://pub.uni-bielefeld.de/record/1620481

Zitieren

Werner A, Duvar S, Müthing J, et al. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. BIOTECHNOLOGY AND BIOENGINEERING. 2000;68(1):59-70.
Werner, A., Duvar, S., Müthing, J., Büntemeyer, H., Lunsdorf, H., Strauss, M., & Lehmann, J. (2000). Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. BIOTECHNOLOGY AND BIOENGINEERING, 68(1), 59-70. https://doi.org/10.1002/(SICI)1097-0290(20000405)68:1<59::AID-BIT7>3.0.CO;2-N
Werner, A, Duvar, S, Müthing, Johannes, Büntemeyer, Heino, Lunsdorf, H, Strauss, M, and Lehmann, J. 2000. “Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers”. BIOTECHNOLOGY AND BIOENGINEERING 68 (1): 59-70.
Werner, A., Duvar, S., Müthing, J., Büntemeyer, H., Lunsdorf, H., Strauss, M., and Lehmann, J. (2000). Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. BIOTECHNOLOGY AND BIOENGINEERING 68, 59-70.
Werner, A., et al., 2000. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. BIOTECHNOLOGY AND BIOENGINEERING, 68(1), p 59-70.
A. Werner, et al., “Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers”, BIOTECHNOLOGY AND BIOENGINEERING, vol. 68, 2000, pp. 59-70.
Werner, A., Duvar, S., Müthing, J., Büntemeyer, H., Lunsdorf, H., Strauss, M., Lehmann, J.: Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. BIOTECHNOLOGY AND BIOENGINEERING. 68, 59-70 (2000).
Werner, A, Duvar, S, Müthing, Johannes, Büntemeyer, Heino, Lunsdorf, H, Strauss, M, and Lehmann, J. “Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers”. BIOTECHNOLOGY AND BIOENGINEERING 68.1 (2000): 59-70.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Development and characterization of a new human hepatic cell line.
Ramboer E, De Craene B, De Kock J, Berx G, Rogiers V, Vanhaecke T, Vinken M., EXCLI J 14(), 2015
PMID: 26869867
Strategies for immortalization of primary hepatocytes.
Ramboer E, De Craene B, De Kock J, Vanhaecke T, Berx G, Rogiers V, Vinken M., J Hepatol 61(4), 2014
PMID: 24911463
Proliferative human cell sources applied as biocomponent in bioartificial livers: a review.
Nibourg GA, Chamuleau RA, van Gulik TM, Hoekstra R., Expert Opin Biol Ther 12(7), 2012
PMID: 22650303
Cell microcarriers and microcapsules of stimuli-responsive polymers.
Brun-Graeppi AK, Richard C, Bessodes M, Scherman D, Merten OW., J Control Release 149(3), 2011
PMID: 21035510
Microcarriers and their potential in tissue regeneration.
Martin Y, Eldardiri M, Lawrence-Watt DJ, Sharpe JR., Tissue Eng Part B Rev 17(1), 2011
PMID: 21083436
Effectiveness factor and diffusion limitations in collagen gel modules containing HepG2 cells.
Corstorphine L, Sefton MV., J Tissue Eng Regen Med 5(2), 2011
PMID: 20653045
Hepatic maturation of human fetal hepatocytes in four-compartment three-dimensional perfusion culture.
Ring A, Gerlach J, Peters G, Pazin BJ, Minervini CF, Turner ME, Thompson RL, Triolo F, Gridelli B, Miki T., Tissue Eng Part C Methods 16(5), 2010
PMID: 19883207
Metabolic rate does not scale with body mass in cultured mammalian cells.
Brown MF, Gratton TP, Stuart JA., Am J Physiol Regul Integr Comp Physiol 292(6), 2007
PMID: 17234960
Functional and morphological comparison of three primary liver cell types cultured in the AMC bioartificial liver.
Poyck PP, Hoekstra R, van Wijk AC, Attanasio C, Calise F, Chamuleau RA, van Gulik TM., Liver Transpl 13(4), 2007
PMID: 17394165
Employing human keratinocytes cultured on macroporous gelatin spheres to treat full thickness-wounds: an in vivo study on athymic rats.
Gustafson CJ, Birgisson A, Junker J, Huss F, Salemark L, Johnson H, Kratz G., Burns 33(6), 2007
PMID: 17467913
Three-dimensional high-density culture of HepG2 cells in a 5-ml radial-flow bioreactor for construction of artificial liver.
Hongo T, Kajikawa M, Ishida S, Ozawa S, Ohno Y, Sawada J, Umezawa A, Ishikawa Y, Kobayashi T, Honda H., J Biosci Bioeng 99(3), 2005
PMID: 16233783
Cell-based models to study hepatic drug metabolism and enzyme induction in humans.
Vermeir M, Annaert P, Mamidi RN, Roymans D, Meuldermans W, Mannens G., Expert Opin Drug Metab Toxicol 1(1), 2005
PMID: 16922654
Cellular therapies for liver replacement.
Selden C, Hodgson H., Transpl Immunol 12(3-4), 2004
PMID: 15157921
In vitro expansion of human hepatocytes is restricted by telomere-dependent replicative aging.
Wege H, Chui MS, Le HT, Strom SC, Zern MA., Cell Transplant 12(8), 2003
PMID: 14763510
Recent developments on human cell lines for the bioartificial liver.
Hoekstra R, Chamuleau RA., Int J Artif Organs 25(3), 2002
PMID: 11999190
Optical waveguide lightmode spectroscopy (OWLS) to monitor cell proliferation quantitatively.
Hug TS, Prenosil JE, Maier P, Morbidelli M., Biotechnol Bioeng 80(2), 2002
PMID: 12209777
Engineering liver therapies for the future.
Allen JW, Bhatia SN., Tissue Eng 8(5), 2002
PMID: 12459052
Improving the next generation of bioartificial liver devices.
Allen JW, Bhatia SN., Semin Cell Dev Biol 13(6), 2002
PMID: 12468246

35 References

Daten bereitgestellt von Europe PubMed Central.

Optimization of serum-free fermentation processes for antibody production.
Buntemeyer H, Lutkemeyer D, Lehmann J., Cytotechnology 5(1), 1991
PMID: 1367052

Büntemeyer,, 0
Evaluation of a novel bioartificial liver in rats with complete liver ischemia: treatment efficacy and species-specific alpha-GST detection to monitor hepatocyte viability.
Flendrig LM, Chamuleau RA, Maas MA, Daalhuisen J, Hasset B, Kilty CG, Doyle S, Ladiges NC, Jorning GG, la Soe JW, Sommeijer D, te Velde AA., J. Hepatol. 30(2), 1999
PMID: 10068112
Hybrid liver support system in a short term application on hepatectomized pigs.
Gerlach J, Trost T, Ryan CJ, Meissler M, Hole O, Muller C, Neuhaus P., Int J Artif Organs 17(10), 1994
PMID: 7896429
Development of a hybrid liver support system: a review.
Gerlach JC., Int J Artif Organs 19(11), 1996
PMID: 8970832
Microcarrier culture of hepatocytes in whole plasma for use in liver support bioreactors.
Cunningham JM, Hodgson HJ., Int J Artif Organs 15(3), 1992
PMID: 1521901
Use of mammalian liver cells for artificial liver support.
Jauregui HO, Chowdhury NR, Chowdhury JR., Cell Transplant 5(3), 1996
PMID: 8727004

Kirillowa, 1996
Bubble free cell culture aeration with porous moving membranes.
Lehmann J, Piehl GW, Schulz R., Dev. Biol. Stand. 66(), 1987
PMID: 3582751

Lehmann, 1988
Performance of plasma-perfused, microencapsulated hepatocytes: prospects for extracorporeal liver support.
Matthew HW, Basu S, Peterson WD, Salley SO, Klein MD., J. Pediatr. Surg. 28(11), 1993
PMID: 8301453
Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor.
Muthing J, Duvar S, Nerger S, Buntemeyer H, Lehmann J., Cytotechnology 18(3), 1995
PMID: 22358745
Functional recovery of porcine hepatocytes after hypothermic or cryogenic preservation for liver support systems.
Naik S, Santangini HA, Trenkler DM, Mullon CJ, Solomon BA, Pan J, Jauregui HO., Cell Transplant 6(5), 1997
PMID: 9331495
Use of a novel bioartificial liver in a patient with acute liver insufficiency.
Neuzil DF, Rozga J, Moscioni AD, Ro MS, Hakim R, Arnaout WS, Demetriou AA., Surgery 113(3), 1993
PMID: 8441969

Nyberg, Ann Surg 226(), 1994
Evaluation of a hepatocyte-entrapment hollow fiber bioreactor: a potential bioartificial liver.
Nyberg SL, Shatford RA, Peshwa MV, White JG, Cerra FB, Hu WS., Biotechnol. Bioeng. 41(2), 1993
PMID: 18609538
Lignocaine metabolite formation as a measure of pre-transplant liver function.
Oellerich M, Burdelski M, Ringe B, Lamesch P, Gubernatis G, Bunzendahl H, Pichlmayr R, Herrmann H., Lancet 1(8639), 1989
PMID: 2564460
Monoethylglycinexylidide formation kinetics: a novel approach to assessment of liver function.
Oellerich M, Raude E, Burdelski M, Schulz M, Schmidt FW, Ringe B, Lamesch P, Pichlmayr R, Raith H, Scheruhn M., J. Clin. Chem. Clin. Biochem. 25(12), 1987
PMID: 3443824
Infection of human cells by an endogenous retrovirus of pigs.
Patience C, Takeuchi Y, Weiss RA., Nat. Med. 3(3), 1997
PMID: 9055854
Development of a hybrid bioartificial liver.
Rozga J, Holzman MD, Ro MS, Griffin DW, Neuzil DF, Giorgio T, Moscioni AD, Demetriou AA., Ann. Surg. 217(5), 1993
PMID: 8489313
Isolated hepatocytes in a bioartificial liver: A single group view and experience.
Rozga J, Morsiani E, Lepage E, Moscioni AD, Demetriou AA, Giorgio T., Biotechnol. Bioeng. 43(7), 1994
PMID: 18615764
Hepatocyte function in a hollow fiber bioreactor: a potential bioartificial liver.
Shatford RA, Nyberg SL, Meier SJ, White JG, Payne WD, Hu WS, Cerra FB., J. Surg. Res. 53(6), 1992
PMID: 1494286
Improvement of serum amino acid profile in hepatic failure with the bioartificial liver using multicellular hepatocyte spheroids.
Shiraha H, Koide N, Hada H, Ujike K, Nakamura M, Shinji T, Gotoh S, Tsuji T., Biotechnol. Bioeng. 50(4), 1996
PMID: 18626990
A low-viscosity epoxy resin embedding medium for electron microscopy.
Spurr AR., J. Ultrastruct. Res. 26(1), 1969
PMID: 4887011
Reversal of fulminant hepatic failure using an extracorporeal liver assist device.
Sussman NL, Chong MG, Koussayer T, He DE, Shang TA, Whisennand HH, Kelly JH., Hepatology 16(1), 1992
PMID: 1618484
Extracorporeal liver support. Application to fulminant hepatic failure.
Sussman NL, Gislason GT, Kelly JH., J. Clin. Gastroenterol. 18(4), 1994
PMID: 8071519

Takahashi, ASAIO J (), 1993

Uchino, Trans Am Soc Artif Intern Organs 37(), 1991
Assessment of artificial liver support technology.
Yarmush ML, Dunn JC, Tompkins RG., Cell Transplant 1(5), 1992
PMID: 1344305
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10699872
PubMed | Europe PMC

Suchen in

Google Scholar