Electroporation of curved lipid membranes in ionic strength gradients

Neumann E, Kakorin S (2000)
BIOPHYSICAL CHEMISTRY 85(2-3): 249-271.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
A thermodynamic theory for the membrane electroporation of curved membranes such as those of lipid vesicles and cylindrical membrane tubes has been developed. The theory covers in particular the observation that electric pore formation and shape deformation of vesicles and cells are dependent on the salt concentration of the suspending solvent. It is shown that transmembrane salt gradients can appreciably modify the electrostatic part of Helfrich's spontaneous curvature, elastic bending rigidity and Gaussian curvature modulus of charged membranes. The Gibbs reaction energy of membrane electroporation can be explicitely expressed in terms of salt gradient-dependent contributions of bending, the ionic double layers and electric surface potentials and dielectric polarisation of aqueous pores. In order to cover the various physical contribution to the chemical process of electroporation-resealing, we have introduced a generalised chemophysical potential covering all generalised forces and generalised displacements in terms of a transformed Gibbs energy formalism. Comparison with, and analysis of, the data of electrooptical relaxation kinetic studies show that the Gibbs reaction energy terms can be directly determined from turbidity dichroism (Planck's conservative dichroism). The approach also quantifies the electroporative cross-membrane material exchange such as electrolyte release, electrohaemolysis of red blood cells or uptake of drugs and dyes and finally gene DNA by membrane electroporation. (C) 2000 Elsevier Science B.V. All rights reserved.
Stichworte
transmembrane salt gradient; membrane electroporation; lipid bilayer; membrane elasticity; spontaneous curvature
Erscheinungsjahr
2000
Zeitschriftentitel
BIOPHYSICAL CHEMISTRY
Band
85
Ausgabe
2-3
Seite(n)
249-271
ISSN
0301-4622
Page URI
https://pub.uni-bielefeld.de/record/1619393

Zitieren

Neumann E, Kakorin S. Electroporation of curved lipid membranes in ionic strength gradients. BIOPHYSICAL CHEMISTRY. 2000;85(2-3):249-271.
Neumann, E., & Kakorin, S. (2000). Electroporation of curved lipid membranes in ionic strength gradients. BIOPHYSICAL CHEMISTRY, 85(2-3), 249-271. https://doi.org/10.1016/S0301-4622(00)00112-5
Neumann, Eberhard, and Kakorin, Sergej. 2000. “Electroporation of curved lipid membranes in ionic strength gradients”. BIOPHYSICAL CHEMISTRY 85 (2-3): 249-271.
Neumann, E., and Kakorin, S. (2000). Electroporation of curved lipid membranes in ionic strength gradients. BIOPHYSICAL CHEMISTRY 85, 249-271.
Neumann, E., & Kakorin, S., 2000. Electroporation of curved lipid membranes in ionic strength gradients. BIOPHYSICAL CHEMISTRY, 85(2-3), p 249-271.
E. Neumann and S. Kakorin, “Electroporation of curved lipid membranes in ionic strength gradients”, BIOPHYSICAL CHEMISTRY, vol. 85, 2000, pp. 249-271.
Neumann, E., Kakorin, S.: Electroporation of curved lipid membranes in ionic strength gradients. BIOPHYSICAL CHEMISTRY. 85, 249-271 (2000).
Neumann, Eberhard, and Kakorin, Sergej. “Electroporation of curved lipid membranes in ionic strength gradients”. BIOPHYSICAL CHEMISTRY 85.2-3 (2000): 249-271.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Effect of electroporation medium conductivity on exogenous molecule transfer to cells in vitro.
Ruzgys P, Jakutavičiūtė M, Šatkauskienė I, Čepurnienė K, Šatkauskas S., Sci Rep 9(1), 2019
PMID: 30723286
Drug release through liposome pores.
Dan N., Colloids Surf B Biointerfaces 126(), 2015
PMID: 25546834
Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip.
Matos T, Senkbeil S, Mendonça A, Queiroz JA, Kutter JP, Bulow L., Analyst 138(24), 2013
PMID: 24162237
Listeria monocytogenes cell wall constituents exert a charge effect on electroporation threshold.
Golberg A, Rae CS, Rubinsky B., Biochim Biophys Acta 1818(3), 2012
PMID: 22100748

46 References

Daten bereitgestellt von Europe PubMed Central.


neumann, 1992

neumann, 1989

eigen, 1963
Digression on membrane electroporation and electroporative delivery of drugs and genes
neumann, radiol oncol 32(), 1998

neumann, 1989

landau, 1991
Deformation of lipid bilayer spheres by electric fields
helfrich, z naturforsch 29c(), 1974

seifert, 1995
Chemical electro-optics and linear dichroism of polyelectrolytes and colloids
kakorin, ber bunsenges phys chem 100(), 1996

komura, 1996

hasted, 1973

gibbs, 1981

böttcher, 1973
Elastic properties of lipid bilayers: theory and possible experiments
helfrich, z naturforsch 28c(), 1973
Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708
Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry
Döbereiner, European Biophysics Journal 28(2), 1999
Annexin V and vesicle membrane electroporation.
Tonsing K, Kakorin S, Neumann E, Liemann S, Huber R., Eur. Biophys. J. 26(4), 1997
PMID: 9378099
Electroporative deformation of salt filled lipid vesicles
Kakorin, European Biophysics Journal 27(1), 1998
Interaction between inclusions embedded in membranes.
Aranda-Espinoza H, Berman A, Dan N, Pincus P, Safran S., Biophys. J. 71(2), 1996
PMID: 8842204
Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation.
Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T., Biophys. J. 71(2), 1996
PMID: 8842225
Cellular membrane potentials induced by alternating fields.
Grosse C, Schwan HP., Biophys. J. 63(6), 1992
PMID: 19431866
Mechanism of electroporative dye uptake by mouse B cells.
Neumann E, Toensing K, Kakorin S, Budde P, Frey J., Biophys. J. 74(1), 1998
PMID: 9449314
Electrooptics of membrane electroporation and vesicle shape deformation
Neumann, Current Opinion in Colloid & Interface Science 1(6), 1996
The association of D-glucose with unilamellar phospholipid vesicles.
Bummer PM, Zografi G., Biophys. Chem. 30(2), 1988
PMID: 3416043
Membrane electroporation and direct gene transfer
Neumann, Bioelectrochemistry and Bioenergetics 28(1-2), 1992
Electropermeabilization and electrofusion of human cells modified by anaesthetic agents
Velizarov, Bioelectrochemistry and Bioenergetics 47(1), 1998
Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
Kakorin S, Stoylov SP, Neumann E., Biophys. Chem. 58(1-2), 1996
PMID: 8679914
Fundamentals of electroporative delivery of drugs and genes.
Neumann E, Kakorin S, Toensing K., Bioelectrochem Bioenerg 48(1), 1999
PMID: 10228565
Membrane electroporation and electromechanical deformation of vesicles and cells
Neumann, Faraday Discussions 111(), 1999
Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory
Döbereiner, Physical Review E 55(4), 1997
Deformation of giant lipid vesicles by electric fields.
Kummrow M, Helfrich W., Phys. Rev., A 44(12), 1991
PMID: 9905991
Mobility and Elasticity of Self-Assembled Membranes
Goetz, Physical Review Letters 82(1), 1999
Contribution of the electric double layer to the curvature elasticity of charged amphiphilic monolayers
LEKKERKERKER, Physica A Statistical and Theoretical Physics 159(3), 1989
Chemical electric field effects in biological macromolecules.
Neumann E., Prog. Biophys. Mol. Biol. 47(3), 1986
PMID: 3544052
Vesicles in contact with nanoparticles and colloids
Lipowsky, EPL (Europhysics Letters) 43(2), 1998
Deformation of spherical vesicles by electric fields
WINTERHALTER, Journal of Colloid and Interface Science 122(2), 1988
Effect of surface charge on the curvature elasticity of membranes
Winterhalter, The Journal of Physical Chemistry 92(24), 1988
Bending elasticity of electrically charged bilayers: coupled monolayers, neutral surfaces, and balancing stresses
Winterhalter, The Journal of Physical Chemistry 96(1), 1992
Undulations of charged membranes
Fogden, Langmuir 6(1), 1990
Curvature elasticity of charged membranes
Mitchell, Langmuir 5(4), 1989
Configurations of fluid membranes and vesicles
Seifert, Advances In Physics 46(1), 1997
Light scattering by a core-mantle spheroidal particle.
Farafonov VG, Voshchinnikov NV, Somsikov VV., Appl Opt 35(27), 1996
PMID: 21127540
Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes.
Leikin S, Kozlov MM, Fuller NL, Rand RP., Biophys. J. 71(5), 1996
PMID: 8913600
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10961510
PubMed | Europe PMC

Suchen in

Google Scholar