Electroporative fast pore-flickering of the annexin V-lipid surface complex, a novel gating concept for ion transport

Neumann E, Siemens PM, Tönsing K (2000)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In contact with lipid bilayers and Ca2+-ions, the intracellular protein human annexin V (wild-type), M-r= 35 800, forms two types of cation-selective channels for the transport of Ca2+-, K+-, Na+- and Mg2+-ions, depending on the protein concentration [AN]. Type (I) channel events are large and predominant at high values [AN] greater than or equal to (K) over bar= 5 nM at 296 K. At 50 mM Ca2+, symmetrical on both membrane sides, AN added at the cis side, the conductance is g(Ca)(I)= 22 +/- 2 pS and at symmetrical 0.1 M K+-conditions: g(K)(I) = 32 +/- 3 pS, associated with two mean open-times <(tau)over bar>(1)(I)= 0.68 +/- 0.2 ms and <(tau)over bar>(2)(1)= 31 +/- 2 ms. Monoclonal anti-AN antibodies added to the trans-side first increase the mean open-times and then abolish the channel activity, suggesting that type (I) channels refer to a membrane spanning protein complex, probably a trimer T, which at [AN] > K changes its membrane organization to a higher oligomer, probably to the side-by-side double-trimer T,. The smaller type (II) channel events are predominant at low [AN]less than or equal to (K) over bar and refer to the (electroporative) adsorption complex of the monomer. The conductances gi(II) for symmetrical concentrations depend non-linearly on the voltage U-m= U-ext + U-AN, where U-AN = 0.02 +/- 0.002 V is the electrostatic contribution of the Ca2+-AN complex and U-ext the externally applied voltage. There is only one mean open-time <(tau)over bar>(0)(II) which is voltage-dependent according to a functional of b (.) U-m(2) where b = 113.9 +/- 15 V-2, yielding an activation Gibbs free energy of G(a) = RT (.) B (.) U-m(2). The conformational flicker probability f(i)(II) in g(i)(II) = g(i)(0)(II) (.) Gamma(i) (.) f(i)(II) is non-linearly voltage-dependent according to a functional of a (.) U-m(2). The Nernst term Gamma(i) refers to asymmetrical ion concentrations. From a = 50 V-2, independent of the ion type, we obtain f(i)(0)(II)=0.03 +/- 0.002 and the conductances for the fully open-channel states: g(Ca)(0)(II)= 69 +/- 3 pS (0.05 M Ca2+) and g(K)(0)(II)= 131 +/- 5 pS (1.2 M K+). From the electroporation term a = pi[r(p)(2)]epsilon(0)(epsilon(w)-epsilon(m))/(2 kTd) we determine the mean pore radius of the complex in its fully open state as (r) over bar(p) = 0.86 +/- 0.05 mm. The adsorbed annexin V (Ca2+) monomer appears to electrostatically facilitate the electric pore formation at the contact interface between the protein and the lipid phase. The complex rapidly flickers and thus limits the ion transport in a voltage-dependent manner. (C) 2000 Elsevier Science B.V. All rights reserved.
ion-transport theory; flicker-gating; electroporative; annexin V-channels; membrane electroporation; oligo-channels
Page URI


Neumann E, Siemens PM, Tönsing K. Electroporative fast pore-flickering of the annexin V-lipid surface complex, a novel gating concept for ion transport. BIOPHYSICAL CHEMISTRY. 2000;86(2-3):203-220.
Neumann, E., Siemens, P. M., & Tönsing, K. (2000). Electroporative fast pore-flickering of the annexin V-lipid surface complex, a novel gating concept for ion transport. BIOPHYSICAL CHEMISTRY, 86(2-3), 203-220. https://doi.org/10.1016/S0301-4622(00)00129-0
Neumann, E., Siemens, P. M., and Tönsing, K. (2000). Electroporative fast pore-flickering of the annexin V-lipid surface complex, a novel gating concept for ion transport. BIOPHYSICAL CHEMISTRY 86, 203-220.
Neumann, E., Siemens, P.M., & Tönsing, K., 2000. Electroporative fast pore-flickering of the annexin V-lipid surface complex, a novel gating concept for ion transport. BIOPHYSICAL CHEMISTRY, 86(2-3), p 203-220.
E. Neumann, P.M. Siemens, and K. Tönsing, “Electroporative fast pore-flickering of the annexin V-lipid surface complex, a novel gating concept for ion transport”, BIOPHYSICAL CHEMISTRY, vol. 86, 2000, pp. 203-220.
Neumann, E., Siemens, P.M., Tönsing, K.: Electroporative fast pore-flickering of the annexin V-lipid surface complex, a novel gating concept for ion transport. BIOPHYSICAL CHEMISTRY. 86, 203-220 (2000).
Neumann, Eberhard, Siemens, PM, and Tönsing, Katja. “Electroporative fast pore-flickering of the annexin V-lipid surface complex, a novel gating concept for ion transport”. BIOPHYSICAL CHEMISTRY 86.2-3 (2000): 203-220.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Annexin-Mediated Calcium Signalling in Plants.
Davies JM., Plants (Basel) 3(1), 2014
PMID: 27135495
Identification of differentially expressed proteins in ruminal epithelium in response to a concentrate-supplemented diet.
Bondzio A, Gabler C, Badewien-Rentzsch B, Schulze P, Martens H, Einspanier R., Am J Physiol Gastrointest Liver Physiol 301(2), 2011
PMID: 21566014
Electromagnetic effects - From cell biology to medicine.
Funk RH, Monsees T, Ozkucur N., Prog Histochem Cytochem 43(4), 2009
PMID: 19167986
Multifunctional annexins
Laohavisit Anuphon, Davies JuliaM., Plant Sci 177(6), 2009
PMID: IND44277127
Nanosecond pulsed electric field generators for the study of subcellular effects.
Kolb JF, Kono S, Schoenbach KH., Bioelectromagnetics 27(3), 2006
PMID: 16304697
Natively folded HypF-N and its early amyloid aggregates interact with phospholipid monolayers and destabilize supported phospholipid bilayers.
Canale C, Torrassa S, Rispoli P, Relini A, Rolandi R, Bucciantini M, Stefani M, Gliozzi A., Biophys J 91(12), 2006
PMID: 16997875
Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils.
Relini A, Torrassa S, Rolandi R, Gliozzi A, Rosano C, Canale C, Bolognesi M, Plakoutsi G, Bucciantini M, Chiti F, Stefani M., J Mol Biol 338(5), 2004
PMID: 15111058
Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization.
Barrau C, Teissié J, Gabriel B., Bioelectrochemistry 63(1-2), 2004
PMID: 15110297
N- and C-terminal halves of human annexin VI differ in ability to form low pH-induced ion channels.
Golczak M, Kirilenko A, Bandorowicz-Pikula J, Pikula S., Biochem Biophys Res Commun 284(3), 2001
PMID: 11396971

34 References

Daten bereitgestellt von Europe PubMed Central.

Seaton, 1996
Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins.
Huber R, Berendes R, Burger A, Schneider M, Karshikov A, Luecke H, Romisch J, Paques E., J. Mol. Biol. 223(3), 1992
PMID: 1311770
Structure-function analysis of the ion channel selectivity filter in human annexin V.
Berendes R, Voges D, Demange P, Huber R, Burger A., Science 262(5132), 1993
PMID: 7692599
Annexin V: the key to understanding ion selectivity and voltage regulation?
Demange, TIBS 19(), 1994
Structural and functional characterisation of the voltage sensor in the ion channel human annexin V.
Liemann S, Benz J, Burger A, Voges D, Hofmann A, Huber R, Gottig P., J. Mol. Biol. 258(4), 1996
PMID: 8636991
Structure and function of the ion channel model system annexin V
Voges, Adv. Enzymol. Relat. Areas Mol. Biol. 71(), 1996
Ionic channels with conformational substates.
Lauger P., Biophys. J. 47(5), 1985
PMID: 2410042
Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers.
Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM., J. Biol. Chem. 265(9), 1990
PMID: 2138622
Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes.
Pigault C, Follenius-Wund A, Schmutz M, Freyssinet JM, Brisson A., J. Mol. Biol. 236(1), 1994
PMID: 8107105
Annexin V forms calcium-dependent trimeric units on phospholipid vesicles.
Concha NO, Head JF, Kaetzel MA, Dedman JR, Seaton BA., FEBS Lett. 314(2), 1992
PMID: 1459245
Sub-domain structure of lipid-bound annexin-V resolved by electron image analysis.
Mosser G, Ravanat C, Freyssinet JM, Brisson A., J. Mol. Biol. 217(2), 1991
PMID: 1825119
Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study.
Voges D, Berendes R, Burger A, Demange P, Baumeister W, Huber R., J. Mol. Biol. 238(2), 1994
PMID: 8158649
Annexin V and vesicle membrane electroporation.
Tonsing K, Kakorin S, Neumann E, Liemann S, Huber R., Eur. Biophys. J. 26(4), 1997
PMID: 9378099
A rapid and efficient purification method for recombinant annexin V for biophysical studies.
Burger A, Berendes R, Voges D, Huber R, Demange P., FEBS Lett. 329(1-2), 1993
PMID: 8354401
Human placental anticoagulant protein: isolation and characterization.
Funakoshi T, Heimark RL, Hendrickson LE, McMullen BA, Fujikawa K., Biochemistry 26(17), 1987
PMID: 2960376
Measurement of protein using bicinchoninic acid.
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC., Anal. Biochem. 150(1), 1985
PMID: 3843705
Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties
Montal, Proc. Natl. Acad. Sci. USA 12(), 1972

Fundamentals of electroporative delivery of drugs and genes.
Neumann E, Kakorin S, Toensing K., Bioelectrochem Bioenerg 48(1), 1999
PMID: 10228565
Crystal structure of the annexin XII hexamer and implications for bilayer insertion.
Luecke H, Chang BT, Mailliard WS, Schlaepfer DD, Haigler HT., Nature 378(6556), 1995
PMID: 7477411

Atkins, 1998
Relaxation methods
Eigen, 1963
The effect of sodium ions on the electrical activity of giant axon of the squid.
HODGKIN AL, KATZ B., J. Physiol. (Lond.) 108(1), 1949
PMID: 18128147

Hille, 1992
Membrane electroporation: biophysical and biotechnical aspects
Neumann, 1989
Membrane electroporation and direct gene transfer
Neumann, Bioelectrochem. Bioenerg. 28(), 1992
Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
Kakorin S, Stoylov SP, Neumann E., Biophys. Chem. 58(1-2), 1996
PMID: 8679914
The relaxation hysteresis of membrane electroporation
Neumann, 1989

Chemical electric field effects in biological macromolecules.
Neumann E., Prog. Biophys. Mol. Biol. 47(3), 1986
PMID: 3544052



Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 11026685
PubMed | Europe PMC

Suchen in

Google Scholar