Differential activation of four specific MAPK pathways by distinct elicitors

Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H (2000)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Cardinale, F; Jonak, C; Ligterink, W; Niehaus, KarstenUniBi; Boller, T; Hirt, H
Abstract / Bemerkung
Plant cells respond to elicitors by inducing a variety of defense responses. Some of these reactions are dependent on the activity of protein kinases. Recently, mitogen-activated protein kinases (MAPKs) have been identified to be activated by fungal and bacterial elicitors as well as by pathogen infection. In gel kinase assays of alfalfa cells treated with yeast cell wall-derived elicitor (YE) revealed that 44- and 46-kDa MAPKs are rapidly and transiently activated. Immunokinase assays with specific MAPK antibodies revealed that YE mainly activated the 46-kDa SIMK and the 44-kDa MMK3 and to a lesser extent the 44-kDa MMK2 and SAMK. When cells mere treated with chemically defined elicitors potentially contained in the YE (chitin and N-acetylglucosamine oligomers, beta -glucan, and ergosterol), the four MAPKs were found to be activated to different levels and with different kinetics, Whereas SIMK and SAMK have been found to be activated by a number of diverse stimuli, MMK3 is activated during mitosis and was therefore assumed to participate in cell division (22). No physiological, process could be associated with MMK2 activity so far. This is the first report that MMK2 and MMK3 can be activated by external stimuli. Overall, our findings indicate that plant cells can sense different cues of a given microorganism through the activation of multiple MAPKs.
Page URI


Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H. Differential activation of four specific MAPK pathways by distinct elicitors. JOURNAL OF BIOLOGICAL CHEMISTRY. 2000;275(47):36734-36740.
Cardinale, F., Jonak, C., Ligterink, W., Niehaus, K., Boller, T., & Hirt, H. (2000). Differential activation of four specific MAPK pathways by distinct elicitors. JOURNAL OF BIOLOGICAL CHEMISTRY, 275(47), 36734-36740. https://doi.org/10.1074/jbc.M007418200
Cardinale, F., Jonak, C., Ligterink, W., Niehaus, K., Boller, T., and Hirt, H. (2000). Differential activation of four specific MAPK pathways by distinct elicitors. JOURNAL OF BIOLOGICAL CHEMISTRY 275, 36734-36740.
Cardinale, F., et al., 2000. Differential activation of four specific MAPK pathways by distinct elicitors. JOURNAL OF BIOLOGICAL CHEMISTRY, 275(47), p 36734-36740.
F. Cardinale, et al., “Differential activation of four specific MAPK pathways by distinct elicitors”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, 2000, pp. 36734-36740.
Cardinale, F., Jonak, C., Ligterink, W., Niehaus, K., Boller, T., Hirt, H.: Differential activation of four specific MAPK pathways by distinct elicitors. JOURNAL OF BIOLOGICAL CHEMISTRY. 275, 36734-36740 (2000).
Cardinale, F, Jonak, C, Ligterink, W, Niehaus, Karsten, Boller, T, and Hirt, H. “Differential activation of four specific MAPK pathways by distinct elicitors”. JOURNAL OF BIOLOGICAL CHEMISTRY 275.47 (2000): 36734-36740.

65 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity.
Thulasi Devendrakumar K, Li X, Zhang Y., Cell Mol Life Sci 75(16), 2018
PMID: 29789867
MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity.
Latrasse D, Jégu T, Li H, de Zelicourt A, Raynaud C, Legras S, Gust A, Samajova O, Veluchamy A, Rayapuram N, Ramirez-Prado JS, Kulikova O, Colcombet J, Bigeard J, Genot B, Bisseling T, Benhamed M, Hirt H., Genome Biol 18(1), 2017
PMID: 28683804
Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweetpotato.
Kim HS, Park SC, Ji CY, Park S, Jeong JC, Lee HS, Kwak SS., Plant Physiol Biochem 108(), 2016
PMID: 27404133
Management of Powdery Mildew in Squash by Plant and Alga Extract Biopesticides.
Zhang S, Mersha Z, Vallad GE, Huang CH., Plant Pathol J 32(6), 2016
PMID: 27904459
Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis.
Ovečka M, Takáč T, Komis G, Vadovič P, Bekešová S, Doskočilová A, Šamajová V, Luptovčiak I, Samajová O, Schweighofer A, Meskiene I, Jonak C, Křenek P, Lichtscheidl I, Škultéty L, Hirt H, Šamaj J., J Exp Bot 65(9), 2014
PMID: 24648569
Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays.
Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M., Front Plant Sci 5(), 2014
PMID: 25408694
Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases.
Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J., Biotechnol Adv 31(1), 2013
PMID: 22198202
Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells.
Salam MA, Jammes F, Hossain MA, Ye W, Nakamura Y, Mori IC, Kwak JM, Murata Y., Plant Biol (Stuttg) 15(3), 2013
PMID: 23043299
Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine.
Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S., Plant Cell Environ 32(2), 2009
PMID: 19021887
The multilevel and dynamic interplay between plant and pathogen.
Hou S, Yang Y, Zhou JM., Plant Signal Behav 4(4), 2009
PMID: 19794843
Activation of members of a MAPK module in beta-glucan elicitor-mediated non-host resistance of soybean.
Daxberger A, Nemak A, Mithöfer A, Fliegmann J, Ligterink W, Hirt H, Ebel J., Planta 225(6), 2007
PMID: 17123101
The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis.
Brader G, Djamei A, Teige M, Palva ET, Hirt H., Mol Plant Microbe Interact 20(5), 2007
PMID: 17506336
The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling.
Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H., Plant Cell 19(10), 2007
PMID: 17933903
Diverse signals converge at MAPK cascades in plant.
Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L., Plant Physiol Biochem 44(5-6), 2006
PMID: 16809044
A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses.
Song D, Chen J, Song F, Zheng Z., Plant Biol (Stuttg) 8(5), 2006
PMID: 16755461
The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin.
Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardóczy V, Teige M, Koncz C, Peck S, Bögre L., Plant J 48(4), 2006
PMID: 17059410
Rapid phosphorylation of a syntaxin during the Avr9/Cf-9-race-specific signaling pathway.
Heese A, Ludwig AA, Jones JD., Plant Physiol 138(4), 2005
PMID: 16024689
Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death.
Katou S, Yoshioka H, Kawakita K, Rowland O, Jones JD, Mori H, Doke N., Plant Physiol 139(4), 2005
PMID: 16306147
Arabidopsis kinome: after the casting.
Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y., Funct Integr Genomics 4(3), 2004
PMID: 14740254
The ethylene signaling pathway: new insights.
Guo H, Ecker JR., Curr Opin Plant Biol 7(1), 2004
PMID: 14732440
Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin.
Wan J, Zhang S, Stacey G., Mol Plant Pathol 5(2), 2004
PMID: IND43617656
Innate immunity in plants and animals: striking similarities and obvious differences.
Nürnberger T, Brunner F, Kemmerling B, Piater L., Immunol Rev 198(), 2004
PMID: 15199967
Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase.
Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel KH., Plant Mol Biol 55(1), 2004
PMID: 15604661
The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis.
Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H., Mol Cell 15(1), 2004
PMID: 15225555
Nitric oxide signalling functions in plant-pathogen interactions.
Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M., Cell Microbiol 6(9), 2004
PMID: 15272861
Beta-1,3 glucan sulfate, but not beta-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis.
Ménard R, Alban S, de Ruffray P, Jamois F, Franz G, Fritig B, Yvin JC, Kauffmann S., Plant Cell 16(11), 2004
PMID: 15494557
Extracellular invertase: key metabolic enzyme and PR protein.
Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK., J Exp Bot 54(382), 2003
PMID: 12508062
Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco.
Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S., Plant J 33(4), 2003
PMID: 12609044
A MAPK pathway mediates ethylene signaling in plants.
Ouaked F, Rozhon W, Lecourieux D, Hirt H., EMBO J 22(6), 2003
PMID: 12628921
Interaction between two mitogen-activated protein kinases during tobacco defense signaling.
Liu Y, Jin H, Yang KY, Kim CY, Baker B, Zhang S., Plant J 34(2), 2003
PMID: 12694591
BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor.
Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ., Plant Physiol 132(4), 2003
PMID: 12913152
Ethylene signaling: the MAPK module has finally landed.
Chang C., Trends Plant Sci 8(8), 2003
PMID: 12927968
Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola.
Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert JM, Pugin A., Mol Plant Microbe Interact 16(12), 2003
PMID: 14651345
Biochemical evidence for the activation of distinct subsets of mitogen-activated protein kinases by voltage and defense-related stimuli.
Link VL, Hofmann MG, Sinha AK, Ehness R, Strnad M, Roitsch T., Plant Physiol 128(1), 2002
PMID: 11788772
Flagellin perception: a paradigm for innate immunity.
Gómez-Gómez L, Boller T., Trends Plant Sci 7(6), 2002
PMID: 12049921
Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth.
Samaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluska F, Hirt H., EMBO J 21(13), 2002
PMID: 12093731
Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis.
Ulm R, Revenkova E, di Sansebastiano GP, Bechtold N, Paszkowski J., Genes Dev 15(6), 2001
PMID: 11274055
Antimicrobial peptides: properties and applicability.
van 't Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV., Biol Chem 382(4), 2001
PMID: 11405223
Signal transmission in the plant immune response.
Nürnberger T, Scheel D., Trends Plant Sci 6(8), 2001
PMID: 11495791
Recent advances in plant MAP kinase signalling.
Zwerger K, Hirt H., Biol Chem 382(8), 2001
PMID: 11592393
Plant mitogen-activated protein kinase signaling cascades.
Tena G, Asai T, Chiu WL, Sheen J., Curr Opin Plant Biol 4(5), 2001
PMID: 11597496
Protein kinases in the plant defence response.
Romeis T., Curr Opin Plant Biol 4(5), 2001
PMID: 11597498
MAPK cascades in plant defense signaling.
Zhang S, Klessig DF., Trends Plant Sci 6(11), 2001
PMID: 11701380


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 10973984
PubMed | Europe PMC

Suchen in

Google Scholar