The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro

Horn S, Meyer J, Heukeshoven J, Fehse B, Schulze C, Li S, Frey J, Poll S, Stocking C, Jucker M (2001)
LEUKEMIA 15(1): 112-120.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
The inositol polyphosphate 5-phosphatase SHIP plays an important role in negative signalling in B cells and mast cells and in the down-regulation of cytokine receptor-mediated signals in myeloid cells. SHIP is expressed as a 145 kDa full-length protein and an isoform of 135 kDa due to alternative splicing. Additional smaller forms of SHIP which are truncated at the carboxy terminus have been described in bone marrow and peripheral blood mononuclear cells (PBMC). Our data demonstrate that human bone marrow cells and PBMC from healthy donors and patients with acute myeloid leukemia express the 145 kDa form of SHIP and low amounts of a 135 kDa form of SHIP in vivo whereas C-terminal-truncated SHIP proteins are generated by a PMSF-sensitive protease during the preparation of cell lysates in vitro. We have further characterized this protease and identified a proteolytic cleavage site in the human SHIP protein C-terminal to tryptophan residue 941. These data support a physiological role for the 145 and 135 kDa forms of SHIP in bone marrow and peripheral blood cells from normal donors and patients with acute myeloid leukemia.
Erscheinungsjahr
Zeitschriftentitel
LEUKEMIA
Band
15
Ausgabe
1
Seite(n)
112-120
ISSN
PUB-ID

Zitieren

Horn S, Meyer J, Heukeshoven J, et al. The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro. LEUKEMIA. 2001;15(1):112-120.
Horn, S., Meyer, J., Heukeshoven, J., Fehse, B., Schulze, C., Li, S., Frey, J., et al. (2001). The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro. LEUKEMIA, 15(1), 112-120. doi:10.1038/sj.leu.2401990
Horn, S., Meyer, J., Heukeshoven, J., Fehse, B., Schulze, C., Li, S., Frey, J., Poll, S., Stocking, C., and Jucker, M. (2001). The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro. LEUKEMIA 15, 112-120.
Horn, S., et al., 2001. The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro. LEUKEMIA, 15(1), p 112-120.
S. Horn, et al., “The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro”, LEUKEMIA, vol. 15, 2001, pp. 112-120.
Horn, S., Meyer, J., Heukeshoven, J., Fehse, B., Schulze, C., Li, S., Frey, J., Poll, S., Stocking, C., Jucker, M.: The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro. LEUKEMIA. 15, 112-120 (2001).
Horn, S, Meyer, J, Heukeshoven, J, Fehse, B, Schulze, C, Li, S, Frey, Jürgen, Poll, S, Stocking, C, and Jucker, M. “The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro”. LEUKEMIA 15.1 (2001): 112-120.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Posttranscriptional regulation of the p85α adapter subunit of phosphatidylinositol 3-kinase in human leukemia cells.
Hofmann BT, Hoxha E, Mohr E, Schulz K, Jücker M., Leuk Lymphoma 52(3), 2011
PMID: 21077741
Reversible phosphorylation in haematological malignancies: potential role for protein tyrosine phosphatases in treatment?
Ruela-de-Sousa RR, Queiroz KC, Peppelenbosch MP, Fuhler GM., Biochim Biophys Acta 1806(2), 2010
PMID: 20659529
Reduced proliferation of CD34(+) cells from patients with acute myeloid leukemia after gene transfer of INPP5D.
Metzner A, Precht C, Fehse B, Fiedler W, Stocking C, Günther A, Mayr GW, Jücker M., Gene Ther 16(4), 2009
PMID: 19148132
Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells.
Levy-Nissenbaum O, Sagi-Assif O, Kapon D, Hantisteanu S, Burg T, Raanani P, Avigdor A, Ben-Bassat I, Witz IP., Oncogene 22(48), 2003
PMID: 14576828
SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets: their interactions and roles in the control of phosphatidylinositol 3,4,5-trisphosphate levels.
Giuriato S, Pesesse X, Bodin S, Sasaki T, Viala C, Marion E, Penninger J, Schurmans S, Erneux C, Payrastre B., Biochem J 376(pt 1), 2003
PMID: 12885297
Proteolytic degradation of Smad4 in extracts of AML blasts.
Wierenga AT, Eggen BJ, Kruijer W, Vellenga E., Leuk Res 26(12), 2002
PMID: 12443883

33 References

Daten bereitgestellt von Europe PubMed Central.

The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase.
Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, Krystal G., Proc. Natl. Acad. Sci. U.S.A. 93(4), 1996
PMID: 8643691
Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2.
Kavanaugh WM, Pot DA, Chin SM, Deuter-Reinhard M, Jefferson AB, Norris FA, Masiarz FR, Cousens LS, Majerus PW, Williams LT., Curr. Biol. 6(4), 1996
PMID: 8723348
p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity.
Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR., Genes Dev. 10(9), 1996
PMID: 8654924
Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span.
Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM, Borowski A, Jirik F, Krystal G, Humphries RK., Genes Dev. 12(11), 1998
PMID: 9620849
SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival.
Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ, Penninger JM., Genes Dev. 13(7), 1999
PMID: 10197978
The human SHIP gene is differentially expressed in cell lineages of the bone marrow and blood.
Geier SJ, Algate PA, Carlberg K, Flowers D, Friedman C, Trask B, Rohrschneider LR., Blood 89(6), 1997
PMID: 9058707
Multiple forms of the SH2-containing inositol phosphatase, SHIP, are generated by C-terminal truncation.
Damen JE, Liu L, Ware MD, Ermolaeva M, Majerus PW, Krystal G., Blood 92(4), 1998
PMID: 9694708
Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin.
Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, Piao YF, Miyazono K, Urabe A, Takaku F., J. Cell. Physiol. 140(2), 1989
PMID: 2663885
Growth of factor-dependent hemopoietic precursor cell lines.
Dexter TM, Garland J, Scott D, Scolnick E, Metcalf D., J. Exp. Med. 152(4), 1980
PMID: 6968334
Release of spleen focus-forming virus (SFFV) from differentiation inducible promyelocytic leukemia cell lines transformed in vitro by Friend leukemia virus.
Greenberger JS, Eckner RJ, Ostertag W, Colletta G, Boschetti S, Nagasawa H, Karpas A, Weichselbaum RR, Moloney WC., Virology 105(2), 1980
PMID: 6932782

JN, Contemp Topics Mol Immunol 10(), 1985
Heterogeneous expression of proto-oncogenes in Hodgkin's disease derived cell lines.
Jucker M, Schaadt M, Diehl V, Poppema S, Jones D, Tesch H., Hematol Oncol 8(4), 1990
PMID: 2210688
Expression of interleukin-6 and interleukin-6 receptor in Hodgkin's disease.
Jucker M, Abts H, Li W, Schindler R, Merz H, Gunther A, von Kalle C, Schaadt M, Diamantstein T, Feller AC., Blood 77(11), 1991
PMID: 1710152

C, Eur Mass Spectrom 4(), 1998
A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors.
Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A., EMBO J. 14(12), 1995
PMID: 7796808
CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation.
Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H, Miyajima A, Yoshimura A., Blood 89(9), 1997
PMID: 9129017
A new protein containing an SH2 domain that inhibits JAK kinases.
Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A., Nature 387(6636), 1997
PMID: 9202126
A family of cytokine-inducible inhibitors of signalling.
Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ., Nature 387(6636), 1997
PMID: 9202125
Structure and function of a new STAT-induced STAT inhibitor.
Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K, Akira S, Kishimoto T., Nature 387(6636), 1997
PMID: 9202127

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 11243378
PubMed | Europe PMC

Suchen in

Google Scholar