Brown representability and flat covers

Krause H (2001)
Journal of Pure and Applied Algebra 157(1): 81-86.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
We exhibit a surprising connection between the following two concepts: Brown representability which arises in stable homotopy theory, and flat covers which arise in module theory. It is shown that Brown representability holds for a compactly generated triangulated category if and only if for every additive functor from the category of compact objects into the category of abelian groups a flat cover can be constructed in a canonical way. The proof also shows that Brown representability for objects and morphisms is a consequence of Brown representability for objects and isomorphisms. (C) 2001 Elsevier Science B.V. All rights reserved. MSC: 55P42; 16D40.
Erscheinungsjahr
Zeitschriftentitel
Journal of Pure and Applied Algebra
Band
157
Ausgabe
1
Seite(n)
81-86
ISSN
PUB-ID

Zitieren

Krause H. Brown representability and flat covers. Journal of Pure and Applied Algebra. 2001;157(1):81-86.
Krause, H. (2001). Brown representability and flat covers. Journal of Pure and Applied Algebra, 157(1), 81-86. doi:10.1016/S0022-4049(00)00002-5
Krause, H. (2001). Brown representability and flat covers. Journal of Pure and Applied Algebra 157, 81-86.
Krause, H., 2001. Brown representability and flat covers. Journal of Pure and Applied Algebra, 157(1), p 81-86.
H. Krause, “Brown representability and flat covers”, Journal of Pure and Applied Algebra, vol. 157, 2001, pp. 81-86.
Krause, H.: Brown representability and flat covers. Journal of Pure and Applied Algebra. 157, 81-86 (2001).
Krause, Henning. “Brown representability and flat covers”. Journal of Pure and Applied Algebra 157.1 (2001): 81-86.