Perspectives for microelectrode arrays for biosensing and membrane electroporation

Neumann E, Tönsing K, Siemens P (2000)
Bioelectrochemistry 51(2): 125-132.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Electrochemical microelectrode devices are among the great challenges for bioelectrochemistry, cell biology and recently also for biomedical research and new clinical electrotherapies. Two representative cases in cell biology and medical research for new trends in the technical devices are selected, heading at new diagnostic and therapeutic clinical applications. One example is from the field of biosensing cholinergic neurotransmitter substances by the nicotinic acetylcholine receptor (AcChoR) in solid-supported lipid bilayer membrane and the other one refers to new developments of electrode systems for the electrochemical delivery of drugs and genes to biological cell aggregates and tissue by the powerful method of membrane electroporation. In both cases addressed to, the new developments include the use of electrical feedback control of electrode arrays for biosensing processes as well as for the extent and duration of tissue electroporation. In line with the impressive advances in medical microsurgery, where increasingly smaller organ targets become accessible, microelectrode systems have become a continuous technical challenge for bioanalytical purposes and, as discussed here in some detail, for the new field of the electroporative delivery of effector substances like drugs and genes, using miniaturized electrochemical electrode arrays. (C)2000 Elsevier Science S.A. All rights reserved.
Stichworte
single current event; acetylcholine receptor; needle electrodes; drug; gene DNA transfer; delivery
Erscheinungsjahr
2000
Zeitschriftentitel
Bioelectrochemistry
Band
51
Ausgabe
2
Seite(n)
125-132
ISSN
1567-5394
Page URI
https://pub.uni-bielefeld.de/record/1617914

Zitieren

Neumann E, Tönsing K, Siemens P. Perspectives for microelectrode arrays for biosensing and membrane electroporation. Bioelectrochemistry. 2000;51(2):125-132.
Neumann, E., Tönsing, K., & Siemens, P. (2000). Perspectives for microelectrode arrays for biosensing and membrane electroporation. Bioelectrochemistry, 51(2), 125-132. https://doi.org/10.1016/S0302-4598(99)00084-7
Neumann, Eberhard, Tönsing, Katja, and Siemens, P. 2000. “Perspectives for microelectrode arrays for biosensing and membrane electroporation”. Bioelectrochemistry 51 (2): 125-132.
Neumann, E., Tönsing, K., and Siemens, P. (2000). Perspectives for microelectrode arrays for biosensing and membrane electroporation. Bioelectrochemistry 51, 125-132.
Neumann, E., Tönsing, K., & Siemens, P., 2000. Perspectives for microelectrode arrays for biosensing and membrane electroporation. Bioelectrochemistry, 51(2), p 125-132.
E. Neumann, K. Tönsing, and P. Siemens, “Perspectives for microelectrode arrays for biosensing and membrane electroporation”, Bioelectrochemistry, vol. 51, 2000, pp. 125-132.
Neumann, E., Tönsing, K., Siemens, P.: Perspectives for microelectrode arrays for biosensing and membrane electroporation. Bioelectrochemistry. 51, 125-132 (2000).
Neumann, Eberhard, Tönsing, Katja, and Siemens, P. “Perspectives for microelectrode arrays for biosensing and membrane electroporation”. Bioelectrochemistry 51.2 (2000): 125-132.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation.
Venslauskas MS, Šatkauskas S., Eur Biophys J 44(5), 2015
PMID: 25939984
Electroporation: an arsenal of application.
Yuan TF., Cytotechnology 54(2), 2007
PMID: 19003020
Tissue damage by pulsed electrical stimulation.
Butterwick A, Vankov A, Huie P, Freyvert Y, Palanker D., IEEE Trans Biomed Eng 54(12), 2007
PMID: 18075042
Micro pulsed radio-frequency electroporation chips.
He H, Chang DC, Lee YK., Bioelectrochemistry 68(1), 2006
PMID: 16039911
Visualization through magnetic resonance imaging of DNA internalized following "in vivo" electroporation.
Crich SG, Lanzardo S, Barge A, Esposito G, Tei L, Forni G, Aime S., Mol Imaging 4(1), 2005
PMID: 15967122
Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy.
Prachayasittikul V, Isarankura Na Ayudhya C, Hilterhaus L, Hinz A, Tantimongcolwat T, Galla HJ., Biochem Biophys Res Commun 327(1), 2005
PMID: 15629446
Ionic conductivity of electroporated lipid bilayer membranes.
Kakorin S, Neumann E., Bioelectrochemistry 56(1-2), 2002
PMID: 12009466

27 References

Daten bereitgestellt von Europe PubMed Central.

Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708
Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches
Hamil, Pflug. Arch. 391(), 1981
Supported membranes scientific and practical applications
Sackmann, Appl. Sci. 271(), 1996
A new class of thiolipids for the attachment of lipid bilayers on gold surfaces
Lang, Langmuir 10(), 1994
Coupling of proton translocation through ATPase incorporated into supported lipid bilayers to an electrochemical process
Naumann, Bioelectrochem. Bioenerg. 42(), 1997
Incorporation of the acetylcholine receptor dimer from Torpedo californica in a peptide-supported lipid membrane investigated by surface plasmon and fluorescence spectroscopy
Schmidt, Biosensors and Bioelectronics 13(), 1998
The initiation of the muscle action potential.
Neumann E, Weber J, Schurholz T., Arch. Physiol. Biochem. 104(6), 1996
PMID: 8980788
Electrostatic determinants of the ion channel control of the nicotinic acetylcholine receptor of Torpedo californica
Kukol, Eur. Biophys. J. 27(), 1998
Reconstitution of the Torpedo californica nicotinic acetylcholine receptor into planar lipid bilayers
Schürholz, Bioelectrochem. Bioenerg. 21(), 1989
Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance.
Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S., Nature 335(6191), 1988
PMID: 2459620
Permeability changes induced by electric impulses in vesicular membranes.
Neumann E, Rosenheck K., J. Membr. Biol. 10(3), 1972
PMID: 4667921
Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy
Mir, Bioelectrochem. Bioenerg. 38(), 1995
Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy.
Heller R, Jaroszeski MJ, Glass LF, Messina JL, Rapaport DP, DeConti RC, Fenske NA, Gilbert RA, Mir LM, Reintgen DS., Cancer 77(5), 1996
PMID: 8608491
Electroporative deformation of salt-filled lipid vesicles
Kakorin, Eur. Biophys. J. 27(), 1998
Kinetics of the electroporative deformation of lipid vesicles and biological cells in an electric field
Kakorin, Ber. Bunsen-Ges. Phys. Chem. 102(), 1998
Digression on membrane electroporation and electroporative delivery of drugs and genes
Neumann, Radiol. Oncol. 32(), 1998
Electric breakdown of bilayer lipid membranes: I. The main experimental fact and their theoretical discussion
Abidor, Bioelectrochem. Bioenerg. 6(), 1979
Electrooptics of membrane electroporation and vesicle shape deformation
Neumann, Curr. Opin. Colloid Interface Sci. 1(), 1996
Membrane electroporation and direct gene transfer
Neumann, Bioelectrochem. Bioenerg. 28(), 1992
Fundamentals of electroporative delivery of drugs and genes.
Neumann E, Kakorin S, Toensing K., Bioelectrochem Bioenerg 48(1), 1999
PMID: 10228565
The relaxation hysteresis of membrane electroporation
Neumann, 1989
Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
Kakorin S, Stoylov SP, Neumann E., Biophys. Chem. 58(1-2), 1996
PMID: 8679914
Chemical electric field effects in biological macromolecules.
Neumann E., Prog. Biophys. Mol. Biol. 47(3), 1986
PMID: 3544052
Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation.
Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T., Biophys. J. 71(2), 1996
PMID: 8842225
Mechanism of electroporative dye uptake by mouse B cells.
Neumann E, Toensing K, Kakorin S, Budde P, Frey J., Biophys. J. 74(1), 1998
PMID: 9449314
Fundamentals of electroporative delivery of drugs and genes.
Neumann E, Kakorin S, Toensing K., Bioelectrochem Bioenerg 48(1), 1999
PMID: 10228565
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10910160
PubMed | Europe PMC

Suchen in

Google Scholar