The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice

Vullhorst D, Jockusch H, Bartsch JW (2001)
Gene 264(1): 29-35.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Vullhorst, D; Jockusch, HaraldUniBi; Bartsch, JW
Abstract / Bemerkung
K(v)3.4 belongs to the shaw subfamily of shaker-type potassium channels. It conducts fast inactivating, high threshold currents in the central nervous system and in fast-twitch skeletal muscle fibers. The corresponding mouse gene, Kcnc4, consists of five exons spanning a region of 20 kb. Approximately 700 bp of regulatory sequence were delineated. It is GC rich and lacks typical TATA and CAAT motifs. Instead, seven Sp-1 and three E-box elements define putative regulatory sequences. The mouse K(v)3.4 mRNA has a size of 3639 bp, 1120 bp of which are 3' untranslated region. A transcript initiated from an alternative 5'-exon was identified by RACE and verified by genomic analysis. This isoform, designated K(v)3.4d, is predominantly expressed in skeletal muscle and probably results from alternative promoter usage. It encodes a channel protein with a novel N-terminal cytoplasmic domain. It lacks the conserved sequence motifs encoding the shaw-type tetramerization domain and the 'ball' peptide, which confers fast inactivation properties. Another splice variant, K(v)3.4c, is derived by exon skipping in the C-terminal region and is expressed at similar levels in brain and muscle. These data demonstrate that differential splicing and alternative transcription start sites are utilised to generate a set of K(v)3.4 variants in skeletal muscle and brain, presumably involved in the regulation of excitability. (C) 2001 Elsevier Science B.V. All rights reserved.
potassium channel; genome organisation; alternative splicing; tissue; specificity
Page URI


Vullhorst D, Jockusch H, Bartsch JW. The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice. Gene. 2001;264(1):29-35.
Vullhorst, D., Jockusch, H., & Bartsch, J. W. (2001). The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice. Gene, 264(1), 29-35.
Vullhorst, D, Jockusch, Harald, and Bartsch, JW. 2001. “The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice”. Gene 264 (1): 29-35.
Vullhorst, D., Jockusch, H., and Bartsch, J. W. (2001). The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice. Gene 264, 29-35.
Vullhorst, D., Jockusch, H., & Bartsch, J.W., 2001. The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice. Gene, 264(1), p 29-35.
D. Vullhorst, H. Jockusch, and J.W. Bartsch, “The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice”, Gene, vol. 264, 2001, pp. 29-35.
Vullhorst, D., Jockusch, H., Bartsch, J.W.: The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice. Gene. 264, 29-35 (2001).
Vullhorst, D, Jockusch, Harald, and Bartsch, JW. “The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice”. Gene 264.1 (2001): 29-35.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A-Type KV Channels in Dorsal Root Ganglion Neurons: Diversity, Function, and Dysfunction.
Zemel BM, Ritter DM, Covarrubias M, Muqeem T., Front Mol Neurosci 11(), 2018
PMID: 30127716
Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells.
Palme D, Misovic M, Schmid E, Klumpp D, Salih HR, Rudner J, Huber SM., Pflugers Arch 465(8), 2013
PMID: 23443853
Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation.
Brown MR, Kronengold J, Gazula VR, Spilianakis CG, Flavell RA, von Hehn CA, Bhattacharjee A, Kaczmarek LK., J Physiol 586(21), 2008
PMID: 18787033
Ion channels and ion transporters of the transverse tubular system of skeletal muscle.
Jurkat-Rott K, Fauler M, Lehmann-Horn F., J Muscle Res Cell Motil 27(5-7), 2006
PMID: 16933023
Molecular identification of Kvalpha subunits that contribute to the oxygen-sensitive K+ current of chemoreceptor cells of the rabbit carotid body.
Sanchez D, López-López JR, Pérez-García MT, Sanz-Alfayate G, Obeso A, Ganfornina MD, Gonzalez C., J Physiol 542(pt 2), 2002
PMID: 12122138

36 References

Daten bereitgestellt von Europe PubMed Central.

The structural and functional diversity of dystrophin.
Ahn AH, Kunkel LM., Nat. Genet. 3(4), 1993
PMID: 7981747
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Molecular diveristy of K+ channels
Coetzee, Ann. N.Y. Acad. Sci. 868(), 1999
Shaker, Shal, Shab, and Shaw express independent K+ current systems.
Covarrubias M, Wei AA, Salkoff L., Neuron 7(5), 1991
PMID: 1742024
Genomic organization, nucleotide sequence, and cellular distribution of a Shaw-related potassium channel gene, Kv3.3, and mapping of Kv3.3 and Kv3.4 to human chromosomes 19 and 1.
Ghanshani S, Pak M, McPherson JD, Strong M, Dethlefs B, Wasmuth JJ, Salkoff L, Gutman GA, Chandy KG., Genomics 12(2), 1992
PMID: 1740329
Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL.
Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA., Nucleic Acids Res. 26(1), 1998
PMID: 9399875
Biophysical and molecular mechanisms of Shaker potassium channel inactivation.
Hoshi T, Zagotta WN, Aldrich RW., Science 250(4980), 1990
PMID: 2122519
Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel.
Isacoff EY, Jan YN, Jan LY., Nature 353(6339), 1991
PMID: 1881453
Genomic organization, chromosomal localization, tissue distribution, and biophysical characterization of a novel mammalian Shaker-related voltage-gated potassium channel, Kv1.7.
Kalman K, Nguyen A, Tseng-Crank J, Dukes ID, Chandy G, Hustad CM, Copeland NG, Jenkins NA, Mohrenweiser H, Brandriff B, Cahalan M, Gutman GA, Chandy KG., J. Biol. Chem. 273(10), 1998
PMID: 9488722
Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases.
Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M., Nature 378(6552), 1995
PMID: 7477295
Chromosomal mapping in the mouse of eight K(+)-channel genes representing the four Shaker-like subfamilies Shaker, Shab, Shaw, and Shal.
Klocke R, Roberds SL, Tamkun MM, Gronemeier M, Augustin A, Albrecht B, Pongs O, Jockusch H., Genomics 18(3), 1993
PMID: 7905852
MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer.
Lassar AB, Buskin JN, Lockshon D, Davis RL, Apone S, Hauschka SD, Weintraub H., Cell 58(5), 1989
PMID: 2550138
Exogenous expression of a dominant negative RORalpha1 vector in muscle cells impairs differentiation: RORalpha1 directly interacts with p300 and MyoD
Lau, Nucleic Acids Res. 27(), 1998

Lehrach, 1990
Promoter elements and transcriptional control of the mouse acetylcholinesterase gene.
Li Y, Camp S, Rachinsky TL, Bongiorno C, Taylor P., J. Biol. Chem. 268(5), 1993
PMID: 8429032
Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system.
Luneau CJ, Williams JB, Marshall J, Levitan ES, Oliva C, Smith JS, Antanavage J, Folander K, Stein RB, Swanson R., Proc. Natl. Acad. Sci. U.S.A. 88(9), 1991
PMID: 2023941
Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing.
Periasamy M, Strehler EE, Garfinkel LI, Gubits RM, Ruiz-Opazo N, Nadal-Ginard B., J. Biol. Chem. 259(21), 1984
PMID: 6092382
K+ channel subunit isoforms with divergent carboxy-terminal sequences carry distinct membrane targeting signals.
Ponce A, Vega-Saenz de Miera E, Kentros C, Moreno H, Thornhill B, Rudy B., J. Membr. Biol. 159(2), 1997
PMID: 9307441
Characterization of a Shaw-related potassium channel family in rat brain.
Rettig J, Wunder F, Stocker M, Lichtinghagen R, Mastiaux F, Beckh S, Kues W, Pedarzani P, Schroter KH, Ruppersberg JP., EMBO J. 11(7), 1992
PMID: 1378392
Control of messenger RNA stability in higher eukaryotes.
Ross J., Trends Genet. 12(5), 1996
PMID: 8984731
Cloning of a human cDNA expressing a high voltage-activating, TEA-sensitive, type-A K+ channel which maps to chromosome 1 band p21.
Rudy B, Sen K, Vega-Saenz de Miera E, Lau D, Ried T, Ward DC., J. Neurosci. Res. 29(3), 1991
PMID: 1920536
Cloned neuronal IK(A) channels reopen during recovery from inactivation.
Ruppersberg JP, Frank R, Pongs O, Stocker M., Nature 353(6345), 1991
PMID: 1922383
Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation.
Ruppersberg JP, Stocker M, Pongs O, Heinemann SH, Frank R, Koenen M., Nature 352(6337), 1991
PMID: 1908562
Cloning and functional expression of a TEA-sensitive A-type potassium channel from rat brain.
Schroter KH, Ruppersberg JP, Wunder F, Rettig J, Stocker M, Pongs O., FEBS Lett. 278(2), 1991
PMID: 1840526
Ion channel targeting in neurons.
Sheng M, Wyszynski M., Bioessays 19(10), 1997
PMID: 9363678
Shaw-related K+ channels in mammals
Vega-Saenz, 1994
Differential expression of Shaw-related K+ channels in the rat central nervous system.
Weiser M, Vega-Saenz de Miera E, Kentros C, Moreno H, Franzen L, Hillman D, Baker H, Rudy B., J. Neurosci. 14(3 Pt 1), 1994
PMID: 8120636
Characterization of the transcription unit of mouse Kv1.4, a voltage-gated potassium channel gene.
Wymore RS, Negulescu D, Kinoshita K, Kalman K, Aiyar J, Gutman GA, Chandy KG., J. Biol. Chem. 271(26), 1996
PMID: 8663090

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 11245975
PubMed | Europe PMC

Suchen in

Google Scholar