FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus

Siemann S, Schneider K, Behrens K, Knochel A, Klipp W, Müller A (2001)
EUROPEAN JOURNAL OF BIOCHEMISTRY 268(7): 1940-1952.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Siemann, S; Schneider, KlausUniBi; Behrens, K; Knochel, A; Klipp, W; Müller, AchimUniBi
Abstract / Bemerkung
In all diazotrophic micro-organisms investigated so far, mutations in nifE, one of the genes involved in the biosynthesis of the FeMo cofactor (FeMoco), resulted in the accumulation of cofactorless inactive dinitrogenase. In this study, we have found that strains of the phototrophic non-sulfur purple bacterium Rhodobacter capsulatus with mutations in nifE, as well as in the operon harbouring the nifE gene, were capable of reducing acetylene and growing diazotrophically, although at distinctly lower rates than the wild-type strain. The diminished rates of substrate reduction were found to correlate with the decreased amounts of the dinitrogenase component (MoFe protein) expressed in R. capsulatus. The in vivo activity, as measured by the routine acetylene-reduction assay, was strictly Mo-dependent. Maximal activity was achieved under diazotrophic growth conditions and by supplementing the growth medium with molybdate (final concentration 20-50 muM) Moreover, in these strains a high proportion of ethane was produced from acetylene (approximate to 10% of ethylene) in vivo. However, in in vitro measurements with cell-free extracts as well as purified dinitrogenase, ethane production was always found to be less than 1%. The isolation and partial purification of the MoFe protein from the nifE mutant strain by Q-Sepharose chromatography and subsequent analysis by EPR spectroscopy and inductively coupled plasma MS revealed that FeMoco is actually incorporated into the protein (1.7 molecules of FeMoco per tetramer). On the basis of the results presented here, the role of NifNE in the biosynthetic pathway of the FeMoco demands reconsideration. It is shown for the first time that NifNE is not essential for biosynthesis of the cofactor, although its presence guarantees formation of a higher content of intact FeMoco-containing MoFe protein molecules. The implications of our findings for the biosynthesis of the FeMoco will be discussed.
Stichworte
nitrogen fixation; EPR spectroscopy; nitrogenase; acetylene reduction; MoFe protein
Erscheinungsjahr
2001
Zeitschriftentitel
EUROPEAN JOURNAL OF BIOCHEMISTRY
Band
268
Ausgabe
7
Seite(n)
1940-1952
ISSN
0014-2956
Page URI
https://pub.uni-bielefeld.de/record/1617486

Zitieren

Siemann S, Schneider K, Behrens K, Knochel A, Klipp W, Müller A. FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY. 2001;268(7):1940-1952.
Siemann, S., Schneider, K., Behrens, K., Knochel, A., Klipp, W., & Müller, A. (2001). FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY, 268(7), 1940-1952. https://doi.org/10.1046/j.1432-1327.2001.02063.x
Siemann, S, Schneider, Klaus, Behrens, K, Knochel, A, Klipp, W, and Müller, Achim. 2001. “FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus”. EUROPEAN JOURNAL OF BIOCHEMISTRY 268 (7): 1940-1952.
Siemann, S., Schneider, K., Behrens, K., Knochel, A., Klipp, W., and Müller, A. (2001). FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 268, 1940-1952.
Siemann, S., et al., 2001. FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY, 268(7), p 1940-1952.
S. Siemann, et al., “FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus”, EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 268, 2001, pp. 1940-1952.
Siemann, S., Schneider, K., Behrens, K., Knochel, A., Klipp, W., Müller, A.: FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY. 268, 1940-1952 (2001).
Siemann, S, Schneider, Klaus, Behrens, K, Knochel, A, Klipp, W, and Müller, Achim. “FeMo cofactor biosynthesis in a nifE(-) mutant of Rhodobacter capsulatus”. EUROPEAN JOURNAL OF BIOCHEMISTRY 268.7 (2001): 1940-1952.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identification of two new genes involved in diazotrophic growth via the alternative Fe-only nitrogenase in the phototrophic purple bacterium Rhodobacter capsulatus.
Sicking C, Brusch M, Lindackers A, Riedel KU, Schubert B, Isakovic N, Krall C, Klipp W, Drepper T, Schneider K, Masepohl B., J Bacteriol 187(1), 2005
PMID: 15601692
A new type of metalloprotein: The Mo storage protein from azotobacter vinelandii contains a polynuclear molybdenum-oxide cluster.
Fenske D, Gnida M, Schneider K, Meyer-Klaucke W, Schemberg J, Henschel V, Meyer AK, Knöchel A, Müller A., Chembiochem 6(2), 2005
PMID: 15651045
Nitrogenase activity of Herbaspirillum seropedicae grown under low iron levels requires the products of nifXorf1 genes.
Klassen G, de Oliveira Pedrosa F, de Souza EM, Yates MG, Rigo LU., FEMS Microbiol Lett 224(2), 2003
PMID: 12892890

72 References

Daten bereitgestellt von Europe PubMed Central.

Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii
Kim, Nature (London) 360(), 1992
The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures.
Chan MK, Kim J, Rees DC., Science 260(5109), 1993
PMID: 8484118
Redox-dependent structural changes in the nitrogenase P-cluster.
Peters JW, Stowell MH, Soltis SM, Finnegan MG, Johnson MK, Rees DC., Biochemistry 36(6), 1997
PMID: 9063865
Structure of ADP.AlF4− stabilized nitrogenase complex and its implications for signal transduction
Schindelin, Nature (London) 387(), 1997
Evidence for coupled electron and proton transfer in the [8Fe-7S] cluster of nitrogenase.
Lanzilotta WN, Christiansen J, Dean DR, Seefeldt LC., Biochemistry 37(32), 1998
PMID: 9698385
Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii.
Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC., Science 257(5077), 1992
PMID: 1529353
Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae.
Imperial J, Ugalde RA, Shah VK, Brill WJ., J. Bacteriol. 158(1), 1984
PMID: 6370956
Mol- mutants of Klebsiella pneumoniae requiring high levels of molybdate for nitrogenase activity.
Imperial J, Ugalde RA, Shah VK, Brill WJ., J. Bacteriol. 163(3), 1985
PMID: 3897191
Isolation of an iron-molybdenum cofactor from nitrogenase.
Shah VK, Brill WJ., Proc. Natl. Acad. Sci. U.S.A. 74(8), 1977
PMID: 410019
Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase
Zheng, J. Bacteriol. 179(), 1997
Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae.
Liang J, Madden M, Shah VK, Burris RH., Biochemistry 29(37), 1990
PMID: 2271541
Biosynthesis of the iron-molybdenum cofactor of nitrogenase.
Allen RM, Chatterjee R, Madden MS, Ludden PW, Shah VK., Crit. Rev. Biotechnol. 14(3), 1994
PMID: 7954845
Dinitrogenase reductase- and MgATP-dependent maturation of apodinitrogenase from Azotobacter vinelandii.
Allen RM, Homer MJ, Chatterjee R, Ludden PW, Roberts GP, Shah VK., J. Biol. Chem. 268(31), 1993
PMID: 8226893
In vitro biosynthesis of iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase
Rangaraj, J. Biol. Chem. 274(), 1999
Incorporation of iron and sulfur from NifB cofactor into the iron-molybdenum cofactor of dinitrogenase.
Allen RM, Chatterjee R, Ludden PW, Shah VK., J. Biol. Chem. 270(45), 1995
PMID: 7592933
Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae
Roberts, J. Bacteriol. 136(), 1978
The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters.
Goodwin PJ, Agar JN, Roll JT, Roberts GP, Johnson MK, Dean DR., Biochemistry 37(29), 1998
PMID: 9671511

Muchmore, 1996
Requirement of NifX and other nif proteins for in vitro biosynthesis of the iron-molybdenum cofactor of nitrogenase.
Shah VK, Rangaraj P, Chatterjee R, Allen RM, Roll JT, Roberts GP, Ludden PW., J. Bacteriol. 181(9), 1999
PMID: 10217770
Nucleotide sequence and genetic analysis of the Rhodobacter capsulatus ORF6-nifUISVW gene region: possible role of NifW in homocitrate processing
Masepohl, Mol. Gen. Genet. 238(), 1993
A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria
Simon, Biotechnology 1(), 1983
Selective removal of molybdenum traces from growth media of N2-fixing bacteria.
Schneider K, Muller A, Johannes KU, Diemann E, Kottmann J., Anal. Biochem. 193(2), 1991
PMID: 1908197
Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus.
Schneider K, Gollan U, Drottboom M, Selsemeier-Voigt S, Muller A., Eur. J. Biochem. 244(3), 1997
PMID: 9108249
Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty
Schmidt, Arch. Microbiol. 46(), 1963
Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang
Beisenherz, Z. Naturforsch. 8b(), 1953
Cleavage of structural proteins during the assembly of the head of bacteriophage T4
Laemmli,, Nature (London) 227(), 1970
Immunochemical quantitation of antigens by single radial immunodiffusion.
Mancini G, Carbonara AO, Heremans JF., Immunochemistry 2(3), 1965
PMID: 4956917

Catty, 1988
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
Towbin H, Staehelin T, Gordon J., Proc. Natl. Acad. Sci. U.S.A. 76(9), 1979
PMID: 388439
Purification and characterization of the nifN and nifE gene products from Azotobacter vinelandii mutant UW45.
Paustian TD, Shah VK, Roberts GP., Proc. Natl. Acad. Sci. U.S.A. 86(16), 1989
PMID: 2668954
Comparative characterization of H2 production by the conventional Mo nitrogenase and the alternative ‘iron-only’ nitrogenase of Rhodobacter capsulatus hup- mutants
Krahn, Appl. Microbiol. Biotechnol. 46(), 1996
Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins
Wang, J. Bacteriol. 175(), 1993
Synthesis and proteolytic degradation of nitrogenase in cultures of the unicellular cyanobacterium Gloeothece strain ATCC 27152.
Reade JP, Dougherty LJ, Rogers LJ, Gallon JR., Microbiology (Reading, Engl.) 145 ( Pt 7)(), 1999
PMID: 10439414
Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae
McLean, Nature (London) 292(), 1981
Autoregulation of nitrogenase expression in Klebsiella pneumoniae.
Hill S, Kavanagh EP., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7921243
Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus
Masepohl, Arch. Microbiol. 165(), 1996
In vitro synthesis of the iron-molybdenum cofactor of nitrogenase.
Shah VK, Imperial J, Ugalde RA, Ludden PW, Brill WJ., Proc. Natl. Acad. Sci. U.S.A. 83(6), 1986
PMID: 3006060

Ludden, 1998
Roles of VnfX and NifX in FeV-co and FeMo-co synthesis in Azotobacter vinelandii
Rüttimann-Johnson, J. Inorg. Biochem. 74(), 1999
A vanadium and iron cluster accumulates on VnfX during iron-vanadium-cofactor synthesis for the vanadium nitrogenase in Azotobacter vinelandii.
Ruttimann-Johnson C, Staples CR, Rangaraj P, Shah VK, Ludden PW., J. Biol. Chem. 274(25), 1999
PMID: 10364262
Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.
Jacobson MR, Brigle KE, Bennett LT, Setterquist RA, Wilson MS, Cash VL, Beynon J, Newton WE, Dean DR., J. Bacteriol. 171(2), 1989
PMID: 2644218
Incorporation of molybdenum into the iron-molybdenum cofactor of nitrogenase.
Allen RM, Roll JT, Rangaraj P, Shah VK, Roberts GP, Ludden PW., J. Biol. Chem. 274(22), 1999
PMID: 10336491
The molybdenum nitrogenase from wild-type Xanthobacter autotrophicus exhibits properties reminiscent of alternative nitrogenases.
Schneider K, Muller A, Krahn E, Hagen WR, Wassink H, Knuttel KH., Eur. J. Biochem. 230(2), 1995
PMID: 7607241
Role of the nitrogenase MoFe protein α-subunit in FeMo-cofactor binding and catalysis
Scott, Nature (London) 343(), 1990
Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium.
Pau RN, Mitchenall LA, Robson RL., J. Bacteriol. 171(1), 1989
PMID: 2914845
Inhibition of iron-molybdenum cofactor biosynthesis by L127Delta NifH and evidence for a complex formation between L127Delta NifH and NifNE.
Rangaraj P, Ryle MJ, Lanzilotta WN, Goodwin PJ, Dean DR, Shah VK, Ludden PW., J. Biol. Chem. 274(41), 1999
PMID: 10506203
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11277916
PubMed | Europe PMC

Suchen in

Google Scholar