Lyapunov exponents and transport in the Zhang model of self-organized criticality
Cessac B, Blanchard P, Krüger T (2001)
PHYSICAL REVIEW E 64(1): 16133.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Cessac, B;
Blanchard, PhilippeUniBi;
Krüger, TyllUniBi
Einrichtung
Abstract / Bemerkung
We discuss the role played by Lyapunov exponents in the dynamics of Zhang's model of self-organized criticality. We show that a Large part of the spectrum (the slowest modes) is associated with energy transport in the lattice. In particular, we give bounds on the first negative Lyapunov exponent in terms of the energy flux dissipated at the boundaries per unit of time. We then establish an explicit formula for the transport modes that appear as diffusion modes in a landscape where the metric is given by the density of active sites. We use a finite size scaling ansatz for the Lyapunov spectrum, and relate the scaling exponent to the scaling of quantities such as avalanche size, duration, density of active sites, etc.
Erscheinungsjahr
2001
Zeitschriftentitel
PHYSICAL REVIEW E
Band
64
Ausgabe
1
Art.-Nr.
16133
ISSN
1063-651X
eISSN
1095-3787
Page URI
https://pub.uni-bielefeld.de/record/1616785
Zitieren
Cessac B, Blanchard P, Krüger T. Lyapunov exponents and transport in the Zhang model of self-organized criticality. PHYSICAL REVIEW E. 2001;64(1): 16133.
Cessac, B., Blanchard, P., & Krüger, T. (2001). Lyapunov exponents and transport in the Zhang model of self-organized criticality. PHYSICAL REVIEW E, 64(1), 16133. https://doi.org/10.1103/PhysRevE.64.016133
Cessac, B, Blanchard, Philippe, and Krüger, Tyll. 2001. “Lyapunov exponents and transport in the Zhang model of self-organized criticality”. PHYSICAL REVIEW E 64 (1): 16133.
Cessac, B., Blanchard, P., and Krüger, T. (2001). Lyapunov exponents and transport in the Zhang model of self-organized criticality. PHYSICAL REVIEW E 64:16133.
Cessac, B., Blanchard, P., & Krüger, T., 2001. Lyapunov exponents and transport in the Zhang model of self-organized criticality. PHYSICAL REVIEW E, 64(1): 16133.
B. Cessac, P. Blanchard, and T. Krüger, “Lyapunov exponents and transport in the Zhang model of self-organized criticality”, PHYSICAL REVIEW E, vol. 64, 2001, : 16133.
Cessac, B., Blanchard, P., Krüger, T.: Lyapunov exponents and transport in the Zhang model of self-organized criticality. PHYSICAL REVIEW E. 64, : 16133 (2001).
Cessac, B, Blanchard, Philippe, and Krüger, Tyll. “Lyapunov exponents and transport in the Zhang model of self-organized criticality”. PHYSICAL REVIEW E 64.1 (2001): 16133.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
5 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Perception and self-organized instability.
Friston K, Breakspear M, Deco G., Front Comput Neurosci 6(), 2012
PMID: 22783185
Friston K, Breakspear M, Deco G., Front Comput Neurosci 6(), 2012
PMID: 22783185
Asymptotic behavior and synchronizability characteristics of a class of recurrent neural networks.
Cebulla C., Neural Comput 19(9), 2007
PMID: 17650067
Cebulla C., Neural Comput 19(9), 2007
PMID: 17650067
Dynamical approach to the spatiotemporal aspects of the Portevin-Le Chatelier effect: chaos, turbulence, and band propagation.
Ananthakrishna G, Bharathi MS., Phys Rev E Stat Nonlin Soft Matter Phys 70(2 pt 2), 2004
PMID: 15447549
Ananthakrishna G, Bharathi MS., Phys Rev E Stat Nonlin Soft Matter Phys 70(2 pt 2), 2004
PMID: 15447549
Dynamics of crossover from a chaotic to a power-law state in jerky flow.
Bharathi MS, Ananthakrishna G., Phys Rev E Stat Nonlin Soft Matter Phys 67(6 pt 2), 2003
PMID: 16241289
Bharathi MS, Ananthakrishna G., Phys Rev E Stat Nonlin Soft Matter Phys 67(6 pt 2), 2003
PMID: 16241289
Anomalous scaling and Lee-Yang zeros in self-organized criticality.
Cessac B, Meunier JL., Phys Rev E Stat Nonlin Soft Matter Phys 65(3 pt 2a), 2002
PMID: 11909189
Cessac B, Meunier JL., Phys Rev E Stat Nonlin Soft Matter Phys 65(3 pt 2a), 2002
PMID: 11909189
29 References
Daten bereitgestellt von Europe PubMed Central.
Self-organized criticality: An explanation of the 1/f noise.
Bak P, Tang C, Wiesenfeld K., Phys. Rev. Lett. 59(4), 1987
PMID: 10035754
Bak P, Tang C, Wiesenfeld K., Phys. Rev. Lett. 59(4), 1987
PMID: 10035754
Self-organized criticality.
Bak P, Tang C, Wiesenfeld K., Phys Rev A Gen Phys 38(1), 1988
PMID: 9900174
Bak P, Tang C, Wiesenfeld K., Phys Rev A Gen Phys 38(1), 1988
PMID: 9900174
Bak, 1996
Self-organized critical state of sandpile automaton models.
Dhar D., Phys. Rev. Lett. 64(14), 1990
PMID: 10041442
Dhar D., Phys. Rev. Lett. 64(14), 1990
PMID: 10041442
Dhar, J. Phys. A 23(), 1990
Majumdar, Physica A 185(), 1992
Exactly solved model of self-organized critical phenomena.
Dhar D, Ramaswamy R., Phys. Rev. Lett. 63(16), 1989
PMID: 10040637
Dhar D, Ramaswamy R., Phys. Rev. Lett. 63(16), 1989
PMID: 10040637
Scaling theory of self-organized criticality.
Zhang YC., Phys. Rev. Lett. 63(5), 1989
PMID: 10041083
Zhang YC., Phys. Rev. Lett. 63(5), 1989
PMID: 10041083
Sornette, J. Phys. (France) 5(), 1995
Scaling and universality in avalanches.
Kadanoff LP, Nagel SR, Wu L, Zhou Sm., Phys Rev A Gen Phys 39(12), 1989
PMID: 9901255
Kadanoff LP, Nagel SR, Wu L, Zhou Sm., Phys Rev A Gen Phys 39(12), 1989
PMID: 9901255
Blanchard, J. Stat. Phys. 88(), 1997
Cessac, 1998
Blanchard, J. Stat. Phys. 98(), 2000
Dickman, Phys. Rev. E 57(), 1998
Giacometti, Phys. Rev. E 58(), 1998
Vespignani, Phys. Rev. E 57(), 1998
Oseledec, Trans. Moscow Math. Soc. 19(), 1968
Eckmann, Rev. Mod. Phys. 57(), 1985
Liapunov exponents from time series.
Eckmann J, Kamphorst SO, Ruelle D, Ciliberto S., Phys Rev A Gen Phys 34(6), 1986
PMID: 9897880
Eckmann J, Kamphorst SO, Ruelle D, Ciliberto S., Phys Rev A Gen Phys 34(6), 1986
PMID: 9897880
Ledrappier, Ann. Math. 122(), 1985
Spatiotemporal intermittency on the sandpile.
Erzan A, Sinha S., Phys. Rev. Lett. 66(21), 1991
PMID: 10043607
Erzan A, Sinha S., Phys. Rev. Lett. 66(21), 1991
PMID: 10043607
Newmann, Commun. Math. Phys. 103(), 1986
Von, Physica D 101(), 1997
Pietronero, Physica A 173(), 1991
Grassberger, J. Phys. (France) 51(), 1990
Lyapunov instability of dense Lennard-Jones fluids.
Posch HA, Hoover WG., Phys Rev A Gen Phys 38(1), 1988
PMID: 9900186
Posch HA, Hoover WG., Phys Rev A Gen Phys 38(1), 1988
PMID: 9900186
Lyapunov spectra, instantaneous normal mode spectra, and relaxation in the Lennard-Jones liquid.
Sastry S., Phys. Rev. Lett. 76(20), 1996
PMID: 10061097
Sastry S., Phys. Rev. Lett. 76(20), 1996
PMID: 10061097
Self-organized critical state of sandpile automaton models.
Dhar D., Phys. Rev. Lett. 64(14), 1990
PMID: 10041442
Dhar D., Phys. Rev. Lett. 64(14), 1990
PMID: 10041442
Luebeck, Phys. Rev. E 56(), 1997
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 11461357
PubMed | Europe PMC
Suchen in