The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy
Krahn E, Weiss BJR, Krockel M, Groppe J, Henkel G, Cramer SP, Trautwein AX, Schneider K, Müller A (2002)
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY 7(1-2): 37-45.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Krahn, E;
Weiss, BJR;
Krockel, M;
Groppe, J;
Henkel, G;
Cramer, SP;
Trautwein, AX;
Schneider, KlausUniBi;
Müller, AchimUniBi
Abstract / Bemerkung
Samples of the dithionite-reduced FeFe protein (the dinitrogenase component of the Fe-only nitrogenase) from Rhodobacter capsulatus have been investigated by Fe-57 Mossbauer spectroscopy and by Fe and Zn EXAFS as well as XANES spectroscopy. The analyses were performed on the basis of data known for the FeMo cofactor and the P cluster of Mo nitrogenases. The prominent Fourier transform peaks of the Fe K-edge spectrum are assigned to Fe-S and Fe-Fe interactions at distances of 2.29 Angstrom and 2.63 Angstrom, respectively. A significant contribution to the Fe EXAFS must be assigned to an Fe backscatterer shell at 3.68 Angstrom, which is an unprecedented feature of the trigonal prismatic arrangement of iron atoms found in the FeMo cofactor of nitrogenase MoFe protein crystal structures. Additional (FeFe)-Fe-... interactions at 2.92 Angstrom and 4.05 Angstrom clearly indicate that the principal geometry, of the P cluster is also conserved. Mossbauer spectra of Fe-57-enriched FeFe protein preparations were recorded at 77 K (20 mT) and 4.2 K (20 mT, 6.2 T), whereby the 4.2 K high-field spectrum clearly demonstrates that the cofactor of the Fe-only nitrogenase (FeFe cofactor) is diamagnetic in the dithionite-reduced ("as isolated") state. The evaluation of the 77 K spectrum is in agreement with the assumption that this cofactor contains eight Fe atoms. In the literature, several genetic and biochemical lines of evidence are presented pointing to a significant structural similarity of the FeFe, the FeMo and and the FeV cofactors. The data reported here provide the first spectroscopic evidence for a structural homology of the FeFe cofactor to the heterometal-containing cofactors, thus substantiating that the FeFe cofactor is the largest iron-sulfur cluster so far found in nature.
Stichworte
extended X-ray absorption fine structure;
Mossbauer;
FeFe cofactor;
Fe nitrogenase;
Rhodobacter capsulatus;
spectroscopy
Erscheinungsjahr
2002
Zeitschriftentitel
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
Band
7
Ausgabe
1-2
Seite(n)
37-45
ISSN
0949-8257
Page URI
https://pub.uni-bielefeld.de/record/1615591
Zitieren
Krahn E, Weiss BJR, Krockel M, et al. The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY. 2002;7(1-2):37-45.
Krahn, E., Weiss, B. J. R., Krockel, M., Groppe, J., Henkel, G., Cramer, S. P., Trautwein, A. X., et al. (2002). The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 7(1-2), 37-45. https://doi.org/10.1007/s007750100263
Krahn, E, Weiss, BJR, Krockel, M, Groppe, J, Henkel, G, Cramer, SP, Trautwein, AX, Schneider, Klaus, and Müller, Achim. 2002. “The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy”. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY 7 (1-2): 37-45.
Krahn, E., Weiss, B. J. R., Krockel, M., Groppe, J., Henkel, G., Cramer, S. P., Trautwein, A. X., Schneider, K., and Müller, A. (2002). The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY 7, 37-45.
Krahn, E., et al., 2002. The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 7(1-2), p 37-45.
E. Krahn, et al., “The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy”, JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, vol. 7, 2002, pp. 37-45.
Krahn, E., Weiss, B.J.R., Krockel, M., Groppe, J., Henkel, G., Cramer, S.P., Trautwein, A.X., Schneider, K., Müller, A.: The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY. 7, 37-45 (2002).
Krahn, E, Weiss, BJR, Krockel, M, Groppe, J, Henkel, G, Cramer, SP, Trautwein, AX, Schneider, Klaus, and Müller, Achim. “The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by FeK-edge EXAFS and Fe-57 Mossbauer spectroscopy”. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY 7.1-2 (2002): 37-45.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
19 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Genetic and Biochemical Analysis of the Azotobacter vinelandii Molybdenum Storage Protein.
Navarro-Rodríguez M, Buesa JM, Rubio LM., Front Microbiol 10(), 2019
PMID: 30984129
Navarro-Rodríguez M, Buesa JM, Rubio LM., Front Microbiol 10(), 2019
PMID: 30984129
Mechanism of N2 Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H2.
Harris DF, Lukoyanov DA, Shaw S, Compton P, Tokmina-Lukaszewska M, Bothner B, Kelleher N, Dean DR, Hoffman BM, Seefeldt LC., Biochemistry 57(5), 2018
PMID: 29283553
Harris DF, Lukoyanov DA, Shaw S, Compton P, Tokmina-Lukaszewska M, Bothner B, Kelleher N, Dean DR, Hoffman BM, Seefeldt LC., Biochemistry 57(5), 2018
PMID: 29283553
Exploring the alternatives of biological nitrogen fixation.
Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW., Metallomics 10(4), 2018
PMID: 29629463
Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW., Metallomics 10(4), 2018
PMID: 29629463
Kinetic Understanding of N2 Reduction versus H2 Evolution at the E4(4H) Janus State in the Three Nitrogenases.
Harris DF, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM., Biochemistry 57(39), 2018
PMID: 30183278
Harris DF, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM., Biochemistry 57(39), 2018
PMID: 30183278
Element strategy of oxygen evolution electrocatalysis based on in situ spectroelectrochemistry.
Ooka H, Takashima T, Yamaguchi A, Hayashi T, Nakamura R., Chem Commun (Camb) 53(53), 2017
PMID: 28466887
Ooka H, Takashima T, Yamaguchi A, Hayashi T, Nakamura R., Chem Commun (Camb) 53(53), 2017
PMID: 28466887
The Nitrogenase FeMo-Cofactor Precursor Formed by NifB Protein: A Diamagnetic Cluster Containing Eight Iron Atoms.
Guo Y, Echavarri-Erasun C, Demuez M, Jiménez-Vicente E, Bominaar EL, Rubio LM., Angew Chem Int Ed Engl 55(41), 2016
PMID: 27611968
Guo Y, Echavarri-Erasun C, Demuez M, Jiménez-Vicente E, Bominaar EL, Rubio LM., Angew Chem Int Ed Engl 55(41), 2016
PMID: 27611968
Structural characterization of CO-inhibited Mo-nitrogenase by combined application of nuclear resonance vibrational spectroscopy, extended X-ray absorption fine structure, and density functional theory: new insights into the effects of CO binding and the role of the interstitial atom.
Scott AD, Pelmenschikov V, Guo Y, Yan L, Wang H, George SJ, Dapper CH, Newton WE, Yoda Y, Tanaka Y, Cramer SP., J Am Chem Soc 136(45), 2014
PMID: 25275608
Scott AD, Pelmenschikov V, Guo Y, Yan L, Wang H, George SJ, Dapper CH, Newton WE, Yoda Y, Tanaka Y, Cramer SP., J Am Chem Soc 136(45), 2014
PMID: 25275608
The sixteenth iron in the nitrogenase MoFe protein.
Zhang L, Kaiser JT, Meloni G, Yang KY, Spatzal T, Andrade SL, Einsle O, Howard JB, Rees DC., Angew Chem Int Ed Engl 52(40), 2013
PMID: 23963815
Zhang L, Kaiser JT, Meloni G, Yang KY, Spatzal T, Andrade SL, Einsle O, Howard JB, Rees DC., Angew Chem Int Ed Engl 52(40), 2013
PMID: 23963815
An electrochemical investigation of intermediates and processes involved in the catalytic reduction of dinitrogen by [HIPTN3N]Mo (HIPTN3N = (3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2)3N).
Munisamy T, Schrock RR., Dalton Trans 41(1), 2012
PMID: 22031021
Munisamy T, Schrock RR., Dalton Trans 41(1), 2012
PMID: 22031021
Ligand dependence of binding to three-coordinate Fe(II) complexes.
Chiang KP, Barrett PM, Ding F, Smith JM, Kingsley S, Brennessel WW, Clark MM, Lachicotte RJ, Holland PL., Inorg Chem 48(12), 2009
PMID: 19438179
Chiang KP, Barrett PM, Ding F, Smith JM, Kingsley S, Brennessel WW, Clark MM, Lachicotte RJ, Holland PL., Inorg Chem 48(12), 2009
PMID: 19438179
Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment.
Schrock RR., Angew Chem Int Ed Engl 47(30), 2008
PMID: 18537212
Schrock RR., Angew Chem Int Ed Engl 47(30), 2008
PMID: 18537212
Modeling the nitrogenase FeMo cofactor with high-spin Fe8S9X+ (X=N, C) clusters. Is the first step for N2 reduction to NH3 a concerted dihydrogen transfer?
McKee ML., J Comput Chem 28(8), 2007
PMID: 17318945
McKee ML., J Comput Chem 28(8), 2007
PMID: 17318945
Modeling hydrogen evolution from the Fe4S4 and Fe8S9X (X = N, C) clusters. Can a Fe--S high-spin cluster serve as a surrogate for the FeMo cofactor?
McKee ML., J Comput Chem 28(11), 2007
PMID: 17285558
McKee ML., J Comput Chem 28(11), 2007
PMID: 17285558
Structural insights into a protein-bound iron-molybdenum cofactor precursor.
Corbett MC, Hu Y, Fay AW, Ribbe MW, Hedman B, Hodgson KO., Proc Natl Acad Sci U S A 103(5), 2006
PMID: 16423898
Corbett MC, Hu Y, Fay AW, Ribbe MW, Hedman B, Hodgson KO., Proc Natl Acad Sci U S A 103(5), 2006
PMID: 16423898
Azotobacter vinelandii vanadium nitrogenase: formaldehyde is a product of catalyzed HCN reduction, and excess ammonia arises directly from catalyzed azide reduction.
Fisher K, Dilworth MJ, Newton WE., Biochemistry 45(13), 2006
PMID: 16566593
Fisher K, Dilworth MJ, Newton WE., Biochemistry 45(13), 2006
PMID: 16566593
Identification of two new genes involved in diazotrophic growth via the alternative Fe-only nitrogenase in the phototrophic purple bacterium Rhodobacter capsulatus.
Sicking C, Brusch M, Lindackers A, Riedel KU, Schubert B, Isakovic N, Krall C, Klipp W, Drepper T, Schneider K, Masepohl B., J Bacteriol 187(1), 2005
PMID: 15601692
Sicking C, Brusch M, Lindackers A, Riedel KU, Schubert B, Isakovic N, Krall C, Klipp W, Drepper T, Schneider K, Masepohl B., J Bacteriol 187(1), 2005
PMID: 15601692
The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel.
Prince RC, Kheshgi HS., Crit Rev Microbiol 31(1), 2005
PMID: 15839402
Prince RC, Kheshgi HS., Crit Rev Microbiol 31(1), 2005
PMID: 15839402
The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus: a comparative study on the redox properties of the metal clusters present in the dinitrogenase components.
Siemann S, Schneider K, Dröttboom M, Müller A., Eur J Biochem 269(6), 2002
PMID: 11895435
Siemann S, Schneider K, Dröttboom M, Müller A., Eur J Biochem 269(6), 2002
PMID: 11895435
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 11862539
PubMed | Europe PMC
Suchen in