Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields
Griese T, Kakorin S, Neumann E (2002)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 4(7): 1217-1227.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Griese, T;
Kakorin, SergejUniBi;
Neumann, EberhardUniBi
Abstract / Bemerkung
Electrooptic and conductometric relaxation spectrometry of lipid unilamellar vesicles (Avanti 20) of radius a = 90 nm, filled with 0.2 M NaCl electrolyte, suspended in low conductive 0.33 M sucrose and 0.2 mM NaCl solution of vesicle number density rho(v) approximate to 2.4 x 10(-15) L-1 and exposed to a rectangular electric field pulse (up to E = 7.5 MV m(-1), pulse duration t(E) = 10 mus) has been used to quantify the structural changes involved in membrane electroporation (ME) and rapid membrane transport, sometimes also called electropermeation (MP), as well as extent and rate of shape deformations. The data are consistent with the formation of ion-conductive membrane pores contributing to conductance not only via the ionic vesicle interior but also by releasing intravesicular electrolyte through the pores during the electric pulse, dominantly by interactive electrodiffusion. The surface area fraction f(p) and the conductivity lambda(p) of the membrane pores increase with increasing field strength, 0 less than or equal to E/MV m(-1) less than or equal to 7.5, in the ranges 0 less than or equal to f(p) less than or equal to 1.4 x 10(-2) and 0 less than or equal to lambda(p)/S m(-1) less than or equal to 2.7 x 10(-3), respectively. The data analysis suggests that electrostatic interactions between the ions and the low dielectric pore wall are the origin of the very small values of the Nernst distribution coefficient, e. g. (γ) over bar = 6.6 10 4 at E = 7.5 MVm(-1). The pore conductivity lambda(p) and (γ) over bar are non-linear functions of the applied electric field, yielding a field-independent pore transport length l(p) = 0.56 nm. In summary, the new analytical proposal establishes quantitative relationships between structural electroporation quantities and characteristic parameters of the small ion transport or electropermeation.
Erscheinungsjahr
2002
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
4
Ausgabe
7
Seite(n)
1217-1227
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/1614936
Zitieren
Griese T, Kakorin S, Neumann E. Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2002;4(7):1217-1227.
Griese, T., Kakorin, S., & Neumann, E. (2002). Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 4(7), 1217-1227. https://doi.org/10.1039/b108193b
Griese, T, Kakorin, Sergej, and Neumann, Eberhard. 2002. “Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 4 (7): 1217-1227.
Griese, T., Kakorin, S., and Neumann, E. (2002). Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 4, 1217-1227.
Griese, T., Kakorin, S., & Neumann, E., 2002. Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 4(7), p 1217-1227.
T. Griese, S. Kakorin, and E. Neumann, “Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 4, 2002, pp. 1217-1227.
Griese, T., Kakorin, S., Neumann, E.: Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 4, 1217-1227 (2002).
Griese, T, Kakorin, Sergej, and Neumann, Eberhard. “Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 4.7 (2002): 1217-1227.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in