Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction

Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002)
JOURNAL OF EXPERIMENTAL BOTANY 53(370): 875-882.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kaiser, W. M.; Weiner, H; Kandlbinder, AndreaUniBi; Tsai, CB; Rockel, P; Sonoda, M; Planchet, E
Abstract / Bemerkung
The mechanism of the post-translational modulation of nitrate reductase activity (NR, EC 1.6.6.1) is briefly summarized, and it is shown that by this mechanism nitric oxide production through NR is also rapidly modulated. New and partly unexpected details on the modulation mechanism have been obtained by using immunological techniques. The phosphorylation state of NR has been assessed with peptide antibodies raised against the serine phosphorylation motive of spinach NR. By co-immunoprecipitation experiments, 14-3-3 binding to phospho-NR and the function of Mg2+ in that process has been elucidated. Conflicting data on the role of NR phosphorylation and 14-3-3 binding in controlling NR proteolysis are discussed. A possible role of other NR inactivating proteins is also briefly considered and the regulation of NR of Ricinus communis is described as an interesting special case that differs from the 'normal' mechanism in several important aspects.
Stichworte
sugar signalling; cytosolic pH; protein phosphorylation; nitrate reductase; nitric oxide; 14-3-3 proteins; phosphorylation state
Erscheinungsjahr
2002
Zeitschriftentitel
JOURNAL OF EXPERIMENTAL BOTANY
Band
53
Ausgabe
370
Seite(n)
875-882
ISSN
0022-0957
eISSN
1460-2431
Page URI
https://pub.uni-bielefeld.de/record/1614825

Zitieren

Kaiser WM, Weiner H, Kandlbinder A, et al. Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. JOURNAL OF EXPERIMENTAL BOTANY. 2002;53(370):875-882.
Kaiser, W. M., Weiner, H., Kandlbinder, A., Tsai, C. B., Rockel, P., Sonoda, M., & Planchet, E. (2002). Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. JOURNAL OF EXPERIMENTAL BOTANY, 53(370), 875-882. https://doi.org/10.1093/jexbot/53.370.875
Kaiser, W. M., Weiner, H, Kandlbinder, Andrea, Tsai, CB, Rockel, P, Sonoda, M, and Planchet, E. 2002. “Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction”. JOURNAL OF EXPERIMENTAL BOTANY 53 (370): 875-882.
Kaiser, W. M., Weiner, H., Kandlbinder, A., Tsai, C. B., Rockel, P., Sonoda, M., and Planchet, E. (2002). Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. JOURNAL OF EXPERIMENTAL BOTANY 53, 875-882.
Kaiser, W.M., et al., 2002. Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. JOURNAL OF EXPERIMENTAL BOTANY, 53(370), p 875-882.
W.M. Kaiser, et al., “Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction”, JOURNAL OF EXPERIMENTAL BOTANY, vol. 53, 2002, pp. 875-882.
Kaiser, W.M., Weiner, H., Kandlbinder, A., Tsai, C.B., Rockel, P., Sonoda, M., Planchet, E.: Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. JOURNAL OF EXPERIMENTAL BOTANY. 53, 875-882 (2002).
Kaiser, W. M., Weiner, H, Kandlbinder, Andrea, Tsai, CB, Rockel, P, Sonoda, M, and Planchet, E. “Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction”. JOURNAL OF EXPERIMENTAL BOTANY 53.370 (2002): 875-882.

65 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis.
Liu M, Liu XX, He XL, Liu LJ, Wu H, Tang CX, Zhang YS, Jin CW., New Phytol 213(3), 2017
PMID: 27775153
Multiple roles of nitric oxide in root development and nitrogen uptake.
Sun H, Tao J, Zhao Q, Xu G, Zhang Y., Plant Signal Behav 12(1), 2017
PMID: 28027007
Evidence towards the involvement of nitric oxide in drought tolerance of sugarcane.
Silveira NM, Hancock JT, Frungillo L, Siasou E, Marcos FCC, Salgado I, Machado EC, Ribeiro RV., Plant Physiol Biochem 115(), 2017
PMID: 28419961
Nitrate signaling and early responses in Arabidopsis roots.
Undurraga SF, Ibarra-Henríquez C, Fredes I, Álvarez JM, Gutiérrez RA., J Exp Bot 68(10), 2017
PMID: 28369507
How can we make plants grow faster? A source-sink perspective on growth rate.
White AC, Rogers A, Rees M, Osborne CP., J Exp Bot 67(1), 2016
PMID: 26466662
Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment.
Filippou P, Antoniou C, Obata T, Van Der Kelen K, Harokopos V, Kanetis L, Aidinis V, Van Breusegem F, Fernie AR, Fotopoulos V., J Exp Bot 67(5), 2016
PMID: 26712823
Nitrate Transport, Sensing, and Responses in Plants.
O'Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA., Mol Plant 9(6), 2016
PMID: 27212387
Nitrogen metabolism in plants under low oxygen stress.
Limami AM, Diab H, Lothier J., Planta 239(3), 2014
PMID: 24370634
Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.
Planchet E, Verdu I, Delahaie J, Cukier C, Girard C, Morère-Le Paven MC, Limami AM., J Exp Bot 65(8), 2014
PMID: 24604737
Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting.
Adamakis ID, Panteris E, Eleftheriou EP., J Plant Physiol 171(13), 2014
PMID: 24973590
Effect of posttranslational modifications on enzyme function and assembly.
Ryšlavá H, Doubnerová V, Kavan D, Vaněk O., J Proteomics 92(), 2013
PMID: 23603109
The role of nitric oxide and hemoglobin in plant development and morphogenesis.
Hebelstrup KH, Shah JK, Igamberdiev AU., Physiol Plant 148(4), 2013
PMID: 23600702
The role of nitric oxide and hemoglobin in plant development and morphogenesis
Hebelstrup KH, Shah JK, Igamberdiev AU., Physiol Plant 148(4), 2013
PMID: IND500678366
Nitric oxide in plants: the roles of ascorbate and hemoglobin.
Wang X, Hargrove MS., PLoS One 8(12), 2013
PMID: 24376554
Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide.
Rosales EP, Iannone MF, Groppa MD, Benavides MP., Amino Acids 42(2-3), 2012
PMID: 21814796
Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research?
Xiong J, Fu G, Yang Y, Zhu C, Tao L., J Exp Bot 63(1), 2012
PMID: 21914661
Nitrate reductase from Triticum aestivum leaves: regulation of activity and possible role in production of nitric oxide.
Galeeva EI, Trifonova TV, Ponomareva AA, Viktorova LV, Minibayeva FV., Biochemistry (Mosc) 77(4), 2012
PMID: 22809160
Tungsten Toxicity in Plants.
Adamakis ID, Panteris E, Eleftheriou EP., Plants (Basel) 1(2), 2012
PMID: 27137642
Large-scale analysis of phosphorylated proteins in maize leaf.
Bi YD, Wang HX, Lu TC, Li XH, Shen Z, Chen YB, Wang BC., Planta 233(2), 2011
PMID: 21053013
Effect of short-term salinity on the nitrate reductase activity in cucumber roots.
Reda M, Migocka M, Kłobus G., Plant Sci 180(6), 2011
PMID: 21497714
Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana.
Thiel J, Rolletschek H, Friedel S, Lunn JE, Nguyen TH, Feil R, Tschiersch H, Müller M, Borisjuk L., BMC Plant Biol 11(), 2011
PMID: 21406103
High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration.
Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB., Plant Cell Environ 34(11), 2011
PMID: 21676000
Production and scavenging of nitric oxide by barley root mitochondria.
Gupta KJ, Kaiser WM., Plant Cell Physiol 51(4), 2010
PMID: 20185408
Measuring NO production by plant tissues and suspension cultured cells.
Vitecek J, Reinohl V, Jones RL., Mol Plant 1(2), 2008
PMID: 19825539
Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine
Carillo Petronia, Mastrolonardo Gabriella, Nacca Francesco, Parisi Danila, Verlotta Angelo, Fuggi Amodio., Funct Plant Biol 35(5), 2008
PMID: IND44117899
Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling.
Prado AM, Colaço R, Moreno N, Silva AC, Feijó JA., Mol Plant 1(4), 2008
PMID: 19825574
Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots.
Groppa MD, Rosales EP, Iannone MF, Benavides MP., Phytochemistry 69(14), 2008
PMID: 18789805
Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis.
Mishina TE, Lamb C, Zeier J., Plant Cell Environ 30(1), 2007
PMID: 17177875
Evidence for post-translational regulation of NrtA, the Aspergillus nidulans high-affinity nitrate transporter.
Wang Y, Li W, Siddiqi Y, Kinghorn JR, Unkles SE, Glass AD., New Phytol 175(4), 2007
PMID: 17688585
Nitric oxide as a bioactive signalling molecule in plant stress responses
Arasimowicz M, Floryszak-Wieczorek J., Plant Sci 172(5), 2007
PMID: IND43914061
Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays.
Zhao DY, Tian QY, Li LH, Zhang WH., Ann Bot 100(3), 2007
PMID: 17709366
Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase.
Kruse J, Kopriva S, Hänsch R, Krauss GJ, Mendel RR, Rennenberg H., Plant Biol (Stuttg) 9(5), 2007
PMID: 17853363
Relationship between nitrate/nitrite reductase activities in meat associated staphylococci and nitrosylmyoglobin formation in a cured meat model system.
Gøtterup J, Olsen K, Knöchel S, Tjener K, Stahnke LH, Møller JK., Int J Food Microbiol 120(3), 2007
PMID: 17920151
NO way to live; the various roles of nitric oxide in plant-pathogen interactions.
Mur LA, Carver TL, Prats E., J Exp Bot 57(3), 2006
PMID: 16377733
Modulation of nitric oxide bioactivity by plant haemoglobins.
Perazzolli M, Romero-Puertas MC, Delledonne M., J Exp Bot 57(3), 2006
PMID: 16377734
Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells.
Saito S, Yamamoto-Katou A, Yoshioka H, Doke N, Kawakita K., Plant Cell Physiol 47(6), 2006
PMID: 16556649
Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity.
Carillo P, Mastrolonardo G, Nacca F, Fuggi A., Functional plant biology : FPB. 32(3), 2005
PMID: IND43704611
Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana.
Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J., Planta 218(6), 2004
PMID: 14716563
Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
Kulma A, Villadsen D, Campbell DG, Meek SE, Harthill JE, Nielsen TH, MacKintosh C., Plant J 37(5), 2004
PMID: 14871307
Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.
Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D., Plant Physiol 135(1), 2004
PMID: 15122020
Nitrate uptake and nitrite release by tomato roots in response to anoxia.
Morard P, Silvestre J, Lacoste L, Caumes E, Lamaze T., J Plant Physiol 161(7), 2004
PMID: 15310075
Response of maize (Zea mays L.) nitrate reductase to UV-B radiation.
Quaggiotti S, Trentin AR, Dalla Vecchia F, Ghisi R., Plant Sci 167(1), 2004
PMID: IND43631280
Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions.
Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C., Plant Physiol 136(1), 2004
PMID: 15347797
Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity.
Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M., Plant Cell 16(10), 2004
PMID: 15367716
Purification of a plant nucleotide pyrophosphatase as a protein that interferes with nitrate reductase and glutamine synthetase assays.
Moorhead GB, Meek SE, Douglas P, Bridges D, Smith CS, Morrice N, MacKintosh C., Eur J Biochem 270(6), 2003
PMID: 12631294

37 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase.
Bachmann M, Shiraishi N, Campbell WH, Yoo BC, Harmon AC, Huber SC, Davies E., Plant Cell 8(3), 1996
PMID: 8721752
Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription.
Cheng CL, Acedo GN, Cristinsin M, Conkling MA., Proc. Natl. Acad. Sci. U.S.A. 89(5), 1992
PMID: 1542684
14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells.
Cotelle V, Meek SE, Provan F, Milne FC, Morrice N, MacKintosh C., EMBO J. 19(12), 2000
PMID: 10856232
Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response.
Delledonne M, Zeier J, Marocco A, Lamb C., Proc. Natl. Acad. Sci. U.S.A. 98(23), 2001
PMID: 11606758

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The activation state of nitrate reductase is not always correlated with total nitrate reductase activity in leaves
Man HM, Abd-El Baki GK , Stegmann P, Weiner H, Kaiser WM., Planta 209(4), 1999
PMID: 10550627

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro.
Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM., J. Exp. Bot. 53(366), 2002
PMID: 11741046
Molecular oxygen as electron acceptor in the NADH-nitrate reductase system.
Ruoff P, Lillo C., Biochem. Biophys. Res. Commun. 172(3), 1990
PMID: 2244885

AUTHOR UNKNOWN, 0
Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase.
Scheible WR, Gonzalez-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze ED, Stitt M., Planta 203(3), 1997
PMID: 9431679

AUTHOR UNKNOWN, 0
Nitric oxide: comparative synthesis and signaling in animal and plant cells.
Wendehenne D, Pugin A, Klessig DF, Durner J., Trends Plant Sci. 6(4), 2001
PMID: 11286923
14-3-3 proteins control proteolysis of nitrate reductase in spinach leaves.
Weiner H, Kaiser WM., FEBS Lett. 455(1-2), 1999
PMID: 10428475
An alternative pathway for nitric oxide production in plants: new features of an old enzyme.
Yamasaki H, Sakihama Y, Takahashi S., Trends Plant Sci. 4(4), 1999
PMID: 10322545
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11912230
PubMed | Europe PMC

Suchen in

Google Scholar