Boundary sets where harmonic functions may become infinite

Gardiner SJ, Hansen W (2002)
Mathematische Annalen 323(1): 41-54.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gardiner, Stephen J.; Hansen, WolfhardUniBi
Abstract / Bemerkung
This paper characterizes the subsets E of R-n which have the following property: there exists a harmonic function u on R-n x (0, + infinity) such that u(x, t) --> +infinity as t --> 0+ for each x in E. This problem has its roots in classical work of Lusin and Privalov, and the answer has been known for some time in the case where n = 1. However, the characterization turns out to be more delicate in higher dimensions.
Erscheinungsjahr
2002
Zeitschriftentitel
Mathematische Annalen
Band
323
Ausgabe
1
Seite(n)
41-54
ISSN
0025-5831
Page URI
https://pub.uni-bielefeld.de/record/1614205

Zitieren

Gardiner SJ, Hansen W. Boundary sets where harmonic functions may become infinite. Mathematische Annalen. 2002;323(1):41-54.
Gardiner, S. J., & Hansen, W. (2002). Boundary sets where harmonic functions may become infinite. Mathematische Annalen, 323(1), 41-54. https://doi.org/10.1007/s002080100294
Gardiner, S. J., and Hansen, W. (2002). Boundary sets where harmonic functions may become infinite. Mathematische Annalen 323, 41-54.
Gardiner, S.J., & Hansen, W., 2002. Boundary sets where harmonic functions may become infinite. Mathematische Annalen, 323(1), p 41-54.
S.J. Gardiner and W. Hansen, “Boundary sets where harmonic functions may become infinite”, Mathematische Annalen, vol. 323, 2002, pp. 41-54.
Gardiner, S.J., Hansen, W.: Boundary sets where harmonic functions may become infinite. Mathematische Annalen. 323, 41-54 (2002).
Gardiner, Stephen J., and Hansen, Wolfhard. “Boundary sets where harmonic functions may become infinite”. Mathematische Annalen 323.1 (2002): 41-54.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar