Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor

Jockusch H, Voigt S, Eberhard D (2003)
Journal of Histochemistry & Cytochemistry 51(3): 401-404.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jockusch, HaraldUniBi; Voigt, Sylvana; Eberhard, Daniel
Abstract / Bemerkung
Green fluorescent protein (GFP) and its variants, such as enhanced GFP (EGFP), have been introduced into mammalian cells by transgenes, e.g., to distinguish donor from host cells after transplantation. Free GFP is extremely soluble and leaks out from liquid-covered cryostat sections so that fixation of whole organs before sectioning has been mandatory. This precludes the analysis of serial sections with respect to fixation-sensitive enzyme activities and antigens. We describe here a vapor fixation for sections from unfixed cryostat blocks of tissue that allows unrestricted enzyme and immunohistochemistry on adjacent sections, as demonstrated for cross-striated muscle and other tissues from EGFP transgenic "green mice" and for a transplantation experiment.
Stichworte
vapor fixation; transgenes; green fluorescent protein
Erscheinungsjahr
2003
Zeitschriftentitel
Journal of Histochemistry & Cytochemistry
Band
51
Ausgabe
3
Seite(n)
401-404
ISSN
0022-1554
eISSN
1551-5044
Page URI
https://pub.uni-bielefeld.de/record/1612496

Zitieren

Jockusch H, Voigt S, Eberhard D. Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor. Journal of Histochemistry & Cytochemistry. 2003;51(3):401-404.
Jockusch, H., Voigt, S., & Eberhard, D. (2003). Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor. Journal of Histochemistry & Cytochemistry, 51(3), 401-404. https://doi.org/10.1177/002215540305100315
Jockusch, Harald, Voigt, Sylvana, and Eberhard, Daniel. 2003. “Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor”. Journal of Histochemistry & Cytochemistry 51 (3): 401-404.
Jockusch, H., Voigt, S., and Eberhard, D. (2003). Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor. Journal of Histochemistry & Cytochemistry 51, 401-404.
Jockusch, H., Voigt, S., & Eberhard, D., 2003. Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor. Journal of Histochemistry & Cytochemistry, 51(3), p 401-404.
H. Jockusch, S. Voigt, and D. Eberhard, “Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor”, Journal of Histochemistry & Cytochemistry, vol. 51, 2003, pp. 401-404.
Jockusch, H., Voigt, S., Eberhard, D.: Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor. Journal of Histochemistry & Cytochemistry. 51, 401-404 (2003).
Jockusch, Harald, Voigt, Sylvana, and Eberhard, Daniel. “Localization of GFP in frozen sections from unfixed mouse tissues: Immobilization of a highly soluble marker protein by formaldehyde vapor”. Journal of Histochemistry & Cytochemistry 51.3 (2003): 401-404.

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees.
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE., Adv Neurobiol 21(), 2018
PMID: 30334222
Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance-based detection in vivo.
Sharkey J, Starkey Lewis PJ, Barrow M, Alwahsh SM, Noble J, Livingstone E, Lennen RJ, Jansen MA, Carrion JG, Liptrott N, Forbes S, Adams DJ, Chadwick AE, Forbes SJ, Murray P, Rosseinsky MJ, Goldring CE, Park BK., Cytotherapy 19(4), 2017
PMID: 28214127
Noninvasive optical diagnostics of enhanced green fluorescent protein expression in skeletal muscle for comparison of electroporation and sonoporation efficiencies.
Tamošiūnas M, Kadikis R, Saknite I, Baltušnikas J, Kilikevičius A, Lihachev A, Petrovska R, Jakovels D, Šatkauskas S., J Biomed Opt 21(4), 2016
PMID: 27129126
PAX3+ skeletal muscle satellite cells retain long-term self-renewal and proliferation.
Yang Q, Yu J, Yu B, Huang Z, Zhang K, Wu, He J, Mao X, Zheng P, Chen D., Muscle Nerve 54(5), 2016
PMID: 27014961
Optimized protocol for immunostaining of experimental GFP-expressing and human hearts.
Zaglia T, Di Bona A, Chioato T, Basso C, Ausoni S, Mongillo M., Histochem Cell Biol 146(4), 2016
PMID: 27311322
A method for fixing and paraffin embedding tissue to retain the natural fluorescence of reporter proteins.
Nakagawa A, Alt KV, Lillemoe KD, Castillo CF, Warshaw AL, Liss AS., Biotechniques 59(3), 2015
PMID: 26345508
In vivo cell tracking of mouse embryonic myoblasts and fast fibers during development.
Guerrero L, Villar P, Martínez L, Badia-Careaga C, Arredondo JJ, Cervera M., Genesis 52(9), 2014
PMID: 24895317
Smooth muscle cell plasticity: fact or fiction?
Nguyen AT, Gomez D, Bell RD, Campbell JH, Clowes AW, Gabbiani G, Giachelli CM, Parmacek MS, Raines EW, Rusch NJ, Speer MY, Sturek M, Thyberg J, Towler DA, Weiser-Evans MC, Yan C, Miano JM, Owens GK., Circ Res 112(1), 2013
PMID: 23093573
Subcellular biochemical investigation of purkinje neurons using synchrotron radiation fourier transform infrared spectroscopic imaging with a focal plane array detector.
Hackett MJ, Borondics F, Brown D, Hirschmugl C, Smith SE, Paterson PG, Nichol H, Pickering IJ, George GN., ACS Chem Neurosci 4(7), 2013
PMID: 23638613
Fetal-maternal interactions in the synepitheliochorial placenta using the eGFP cloned cattle model.
Pereira FT, Oliveira LJ, Barreto Rda S, Mess A, Perecin F, Bressan FF, Mesquita LG, Miglino MA, Pimentel JR, Fantinato Neto P, Meirelles FV., PLoS One 8(5), 2013
PMID: 23724045
Specific gene delivery to liver sinusoidal and artery endothelial cells.
Abel T, El Filali E, Waern J, Schneider IC, Yuan Q, Münch RC, Hick M, Warnecke G, Madrahimov N, Kontermann RE, Schüttrumpf J, Müller UC, Seppen J, Ott M, Buchholz CJ., Blood 122(12), 2013
PMID: 23884859
A mouse model for fetal maternal stem cell transfer during ischemic cardiac injury.
Kara RJ, Bolli P, Matsunaga I, Tanweer O, Altman P, Chaudhry HW., Clin Transl Sci 5(4), 2012
PMID: 22883609
Strength and muscle specificity of a compact promoter derived from the slow troponin I gene in the context of episomal (gutless adenovirus) and integrating (lentiviral) vectors.
Robert MA, Lin Y, Bendjelloul M, Zeng Y, Dessolin S, Broussau S, Larochelle N, Nalbantoglu J, Massie B, Gilbert R., J Gene Med 14(12), 2012
PMID: 23071006
Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression.
Ravenscroft G, Jackaman C, Sewry CA, McNamara E, Squire SE, Potter AC, Papadimitriou J, Griffiths LM, Bakker AJ, Davies KE, Laing NG, Nowak KJ., PLoS One 6(12), 2011
PMID: 22174871
Transient transmembrane release of green fluorescent proteins with sonoporation.
Kaddur K, Lebegue L, Tranquart F, Midoux P, Pichon C, Bouakaz A., IEEE Trans Ultrason Ferroelectr Freq Control 57(7), 2010
PMID: 20639150
De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific.
Majka SM, Fox KE, Psilas JC, Helm KM, Childs CR, Acosta AS, Janssen RC, Friedman JE, Woessner BT, Shade TR, Varella-Garcia M, Klemm DJ., Proc Natl Acad Sci U S A 107(33), 2010
PMID: 20679227
The origin of post-injury neointimal cells in the rat balloon injury model.
Rodriguez-Menocal L, St-Pierre M, Wei Y, Khan S, Mateu D, Calfa M, Rahnemai-Azar AA, Striker G, Pham SM, Vazquez-Padron RI., Cardiovasc Res 81(1), 2009
PMID: 18818213
Perfusion fixation preserves enhanced yellow fluorescent protein and other cellular markers in lymphoid tissues.
Dauner JG, Chappell CP, Williams IR, Jacob J., J Immunol Methods 340(2), 2009
PMID: 19007785
Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa.
Tomé M, Lindsay SL, Riddell JS, Barnett SC., Stem Cells 27(9), 2009
PMID: 19544421
Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts.
Kroehne V, Heschel I, Schügner F, Lasrich D, Bartsch JW, Jockusch H., J Cell Mol Med 12(5a), 2008
PMID: 18194451
A comparative analysis of novel fluorescent proteins as reporters for gene transfer studies.
Bell P, Vandenberghe LH, Wu D, Johnston J, Limberis M, Wilson JM., J Histochem Cytochem 55(9), 2007
PMID: 17510373
Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice.
Bentzon JF, Weile C, Sondergaard CS, Hindkjaer J, Kassem M, Falk E., Arterioscler Thromb Vasc Biol 26(12), 2006
PMID: 17008593
Patterns of myocardial histogenesis as revealed by mouse chimeras.
Eberhard D, Jockusch H., Dev Biol 278(2), 2005
PMID: 15680354
Histological analysis of GFP expression in murine bone.
Jiang X, Kalajzic Z, Maye P, Braut A, Bellizzi J, Mina M, Rowe DW., J Histochem Cytochem 53(5), 2005
PMID: 15872052
Intrapulmonary and intramyocardial gene transfer in rhesus monkeys (Macaca mulatta): safety and efficiency of HIV-1-derived lentiviral vectors for fetal gene delivery.
Tarantal AF, McDonald RJ, Jimenez DF, Lee CC, O'Shea CE, Leapley AC, Won RH, Plopper CG, Lutzko C, Kohn DB., Mol Ther 12(1), 2005
PMID: 15963924
Immunohistochemical determination of cytosolic cytochrome C concentration in cardiomyocytes.
van Beek-Harmsen BJ, van der Laarse WJ., J Histochem Cytochem 53(7), 2005
PMID: 15995138
Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation.
Schimmelpfennig CH, Schulz S, Arber C, Baker J, Tarner I, McBride J, Contag CH, Negrin RS., Am J Pathol 167(5), 2005
PMID: 16251416
Autolytic activation and localization in Schneider cells (S2) of calpain B from Drosophila.
Farkas A, Tompa P, Schád E, Sinka R, Jékely G, Friedrich P., Biochem J 378(pt 2), 2004
PMID: 14614768
Green fluorescent protein is a stable morphological marker for schwann cell transplants in bioengineered nerve conduits.
Tohill MP, Mann DJ, Mantovani CM, Wiberg M, Terenghi G., Tissue Eng 10(9-10), 2004
PMID: 15588396

7 References

Daten bereitgestellt von Europe PubMed Central.

Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro.
Bader D, Masaki T, Fischman DA., J. Cell Biol. 95(3), 1982
PMID: 6185504

AUTHOR UNKNOWN, 0
Direct correlation of parvalbumin levels with myosin isoforms and succinate dehydrogenase activity on frozen sections of rodent muscle.
Fuchtbauer EM, Rowlerson AM, Gotz K, Friedrich G, Mabuchi K, Gergely J, Jockusch H., J. Histochem. Cytochem. 39(3), 1991
PMID: 1825216

Jockusch, J Muscle Res Cell Motil 21(), 2000
Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole.
NACHLAS MM, TSOU KC, DE SOUZA E, CHENG CS, SELIGMAN AM., J. Histochem. Cytochem. 5(4), 1957
PMID: 13463314
'Green mice' as a source of ubiquitous green cells.
Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y., FEBS Lett. 407(3), 1997
PMID: 9175875
Rapid and sensitive detection of enhanced green fluorescent protein expression in paraffin sections by confocal laser scanning microscopy.
Walter I, Fleischmann M, Klein D, Muller M, Salmons B, Gunzburg WH, Renner M, Gelbmann W., Histochem. J. 32(2), 2000
PMID: 10816074
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 12588968
PubMed | Europe PMC

Suchen in

Google Scholar