On the spectra of close-to-Schwarz matrices

Elsner L, Hershkowitz D (2003)
Linear Algebra and its Applications 363: 81-88.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
Several inverse eigenvalue problems for tridiagonal matrices are discussed. In particular, it is shown that for every set S of n complex numbers which is symmetric with respect to the real axis, there exists a symmetric in modulus tridiagonal n x n matrix A which has a nonnegative super diagonal, a nonpositive subdiagonal, all diagonal elements zero except for a I I which is nonnegative and an, which is nonpositive, and with spectrum S. (C) 2002 Elsevier Science Inc. All fights reserved.
Erscheinungsjahr
Band
363
Seite(n)
81-88
ISSN
PUB-ID

Zitieren

Elsner L, Hershkowitz D. On the spectra of close-to-Schwarz matrices. Linear Algebra and its Applications. 2003;363:81-88.
Elsner, L., & Hershkowitz, D. (2003). On the spectra of close-to-Schwarz matrices. Linear Algebra and its Applications, 363, 81-88. doi:10.1016/S0024-3795(02)00541-4
Elsner, L., and Hershkowitz, D. (2003). On the spectra of close-to-Schwarz matrices. Linear Algebra and its Applications 363, 81-88.
Elsner, L., & Hershkowitz, D., 2003. On the spectra of close-to-Schwarz matrices. Linear Algebra and its Applications, 363, p 81-88.
L. Elsner and D. Hershkowitz, “On the spectra of close-to-Schwarz matrices”, Linear Algebra and its Applications, vol. 363, 2003, pp. 81-88.
Elsner, L., Hershkowitz, D.: On the spectra of close-to-Schwarz matrices. Linear Algebra and its Applications. 363, 81-88 (2003).
Elsner, Ludwig, and Hershkowitz, Daniel. “On the spectra of close-to-Schwarz matrices”. Linear Algebra and its Applications 363 (2003): 81-88.