Lower order perturbations of Dirichlet processes

Röckner M, Zhang TS (2003)
Forum Mathematicum 15(2): 285-297.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
We consider lower order perturbations M of symmetric diffusions M-0 and prove that M is locally absolutely continuous with respect to M-0 up to life time. The novelty is that the absolute value of the drift b and zero order part c are merely assumed to be in L-d (R-d) + L-infinity(R-d), and Ld/2(R-d)+L-infinity(R-d). So, \b\(2) and c are not in the Kato-class (as is the case when \b\(2), \c\ is an element of L-p(R-d) + L-infinity(R-d) with p > d/2). We also consider the case where an adjoint drift is present. Finally, we use these results to prove new convergence results for diffusions.
Erscheinungsjahr
2003
Zeitschriftentitel
Forum Mathematicum
Band
15
Ausgabe
2
Seite(n)
285-297
ISSN
0933-7741
Page URI
https://pub.uni-bielefeld.de/record/1612172

Zitieren

Röckner M, Zhang TS. Lower order perturbations of Dirichlet processes. Forum Mathematicum. 2003;15(2):285-297.
Röckner, M., & Zhang, T. S. (2003). Lower order perturbations of Dirichlet processes. Forum Mathematicum, 15(2), 285-297. doi:10.1515/form.2003.016
Röckner, M., and Zhang, T. S. (2003). Lower order perturbations of Dirichlet processes. Forum Mathematicum 15, 285-297.
Röckner, M., & Zhang, T.S., 2003. Lower order perturbations of Dirichlet processes. Forum Mathematicum, 15(2), p 285-297.
M. Röckner and T.S. Zhang, “Lower order perturbations of Dirichlet processes”, Forum Mathematicum, vol. 15, 2003, pp. 285-297.
Röckner, M., Zhang, T.S.: Lower order perturbations of Dirichlet processes. Forum Mathematicum. 15, 285-297 (2003).
Röckner, Michael, and Zhang, TS. “Lower order perturbations of Dirichlet processes”. Forum Mathematicum 15.2 (2003): 285-297.