Numerical equation of state and other scaling functions from an improved three-dimensional Ising model
Engels J, Fromme L, Seniuch M (2003)
NUCLEAR PHYSICS B 655(3): 277-299.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Engels, JürgenUniBi;
Fromme, L;
Seniuch, M
Abstract / Bemerkung
We study an improved three-dimensional Ising model with external magnetic field near the critical point by Monte Carlo simulations. From our data we determine numerically the universal scaling functions of the magnetization, that is the equation of state, of the susceptibility and of the correlation length. In order to normalize the scaling functions we calculate the critical amplitudes of the three observables on the critical line, the phase boundary and the critical isochore. The amplitudes lead to the universal ratios C+/C- = 4.756(28), Rchi = 1.723(13), Q(c) = 0.326(3), and Q(2) = 1.201(10). We find excellent agreement of the data with the parametric representation of the asymptotic equation of state as found by field theory methods. The comparison of the susceptibility data to the corresponding scaling function shows a marginal difference in the symmetric phase, which can be explained by the slightly different value for Rchi used in the parametrization. The shape of the correlation-length-scaling function is similar to the one of the susceptibility, as expected from earlier parametrizations. The peak positions of the two scaling functions are coinciding within the error bars. (C) 2003 Elsevier Science B.V. All rights reserved.
Stichworte
equation of state;
Ising model;
scaling function;
correlation length;
universal amplitude ratios
Erscheinungsjahr
2003
Zeitschriftentitel
NUCLEAR PHYSICS B
Band
655
Ausgabe
3
Seite(n)
277-299
ISSN
0550-3213
Page URI
https://pub.uni-bielefeld.de/record/1612158
Zitieren
Engels J, Fromme L, Seniuch M. Numerical equation of state and other scaling functions from an improved three-dimensional Ising model. NUCLEAR PHYSICS B. 2003;655(3):277-299.
Engels, J., Fromme, L., & Seniuch, M. (2003). Numerical equation of state and other scaling functions from an improved three-dimensional Ising model. NUCLEAR PHYSICS B, 655(3), 277-299. https://doi.org/10.1016/S0550-3213(03)00085-3
Engels, Jürgen, Fromme, L, and Seniuch, M. 2003. “Numerical equation of state and other scaling functions from an improved three-dimensional Ising model”. NUCLEAR PHYSICS B 655 (3): 277-299.
Engels, J., Fromme, L., and Seniuch, M. (2003). Numerical equation of state and other scaling functions from an improved three-dimensional Ising model. NUCLEAR PHYSICS B 655, 277-299.
Engels, J., Fromme, L., & Seniuch, M., 2003. Numerical equation of state and other scaling functions from an improved three-dimensional Ising model. NUCLEAR PHYSICS B, 655(3), p 277-299.
J. Engels, L. Fromme, and M. Seniuch, “Numerical equation of state and other scaling functions from an improved three-dimensional Ising model”, NUCLEAR PHYSICS B, vol. 655, 2003, pp. 277-299.
Engels, J., Fromme, L., Seniuch, M.: Numerical equation of state and other scaling functions from an improved three-dimensional Ising model. NUCLEAR PHYSICS B. 655, 277-299 (2003).
Engels, Jürgen, Fromme, L, and Seniuch, M. “Numerical equation of state and other scaling functions from an improved three-dimensional Ising model”. NUCLEAR PHYSICS B 655.3 (2003): 277-299.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
Inspire: 595919
Suchen in