FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow

Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M (2003)
Vision Research 43(7): 779-791.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
Vision Research
Band
43
Ausgabe
7
Seite(n)
779-791
ISSN
PUB-ID

Zitieren

Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M. FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Research. 2003;43(7):779-791.
Lindemann, J. P., Kern, R., Michaelis, C., Meyer, P., van Hateren, J. H., & Egelhaaf, M. (2003). FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Research, 43(7), 779-791. doi:10.1016/S0042-6989(03)00039-7
Lindemann, J. P., Kern, R., Michaelis, C., Meyer, P., van Hateren, J. H., and Egelhaaf, M. (2003). FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Research 43, 779-791.
Lindemann, J.P., et al., 2003. FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Research, 43(7), p 779-791.
J.P. Lindemann, et al., “FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow”, Vision Research, vol. 43, 2003, pp. 779-791.
Lindemann, J.P., Kern, R., Michaelis, C., Meyer, P., van Hateren, J.H., Egelhaaf, M.: FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Research. 43, 779-791 (2003).
Lindemann, Jens Peter, Kern, Roland, Michaelis, C, Meyer, P, van Hateren, JH, and Egelhaaf, Martin. “FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow”. Vision Research 43.7 (2003): 779-791.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

FicTrac: a visual method for tracking spherical motion and generating fictive animal paths.
Moore RJ, Taylor GJ, Paulk AC, Pearson T, van Swinderen B, Srinivasan MV., J Neurosci Methods 225(), 2014
PMID: 24491637
Early metamorphic insertion technology for insect flight behavior monitoring.
Verderber A, McKnight M, Bozkurt A., J Vis Exp (89), 2014
PMID: 25079130
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments.
Takalo J, Piironen A, Honkanen A, Lempeä M, Aikio M, Tuukkanen T, Vähäsöyrinki M., Sci Rep 2(), 2012
PMID: 22442752
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Visual response properties of neck motor neurons in the honeybee.
Hung YS, van Kleef JP, Ibbotson MR., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(12), 2011
PMID: 21909972
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS One 5(2), 2010
PMID: 20179763
Local and global motion preferences in descending neurons of the fly.
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(12), 2009
PMID: 19830435
A modular display system for insect behavioral neuroscience.
Reiser MB, Dickinson MH., J Neurosci Methods 167(2), 2008
PMID: 17854905
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol 3(6), 2005
PMID: 15884977
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
Heitwerth J, Kern R, van Hateren JH, Egelhaaf M., J Neurophysiol 94(3), 2005
PMID: 15917319
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(12), 2005
PMID: 16133502
Movement-induced motion signal distributions in outdoor scenes.
Zanker JM, Zeil J., Network 16(4), 2005
PMID: 16611590
Context-dependent stimulus presentation to freely moving animals in 3D.
Fry SN, Müller P, Baumann HJ, Straw AD, Bichsel M, Robert D., J Neurosci Methods 135(1-2), 2004
PMID: 15020099
Visually guided orientation in flies: case studies in computational neuroethology.
Egelhaaf M, Böddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(6), 2003
PMID: 12750938
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker N, Egelhaaf M., Proc Biol Sci 270(1527), 2003
PMID: 14561312

58 References

Daten bereitgestellt von Europe PubMed Central.

Reading a neural code.
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D., Science 252(5014), 1991
PMID: 2063199
Temporal modulation of luminance adapts time constant of fly movement detectors
Borst, Biological Cybernetics 56(), 1987
Detecting visual motion: Theory and models
Borst, 1993
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462

AUTHOR UNKNOWN, 0
Movement detection in arthropods
Egelhaaf, 1993
Processing of synaptic information depends on the structure of the dendritic tree.
Egelhaaf M, Haag J, Borst A., Neuroreport 6(1), 1994
PMID: 7703416
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly
Egelhaaf, Biological Cybernetics 56(), 1987
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications
Franceschini, 1975
A common frame of reference for the analysis of optic flow and vestibular information
Frost, 2000
Amplification of high frequency synaptic inputs by active dendritic membrane processes
Haag, Nature 379(), 1996
Afterimages in fly motion vision.
Harris RA, O'Carroll DC., Vision Res. 42(14), 2002
PMID: 12127104
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Motion sensitive interneurons in the optomotor system of the fly. I. The Horizontal Cells: Structure and signals
Hausen, Biological Cybernetics 45(), 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The Horizontal Cells: Receptive field organization and response characteristics
Hausen, Biological Cybernetics 46(), 1982
Neural mechanisms of visual course control in insects
Hausen, 1989
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
The flic file format
Kent, Dr Dobb’s Journal 18(), 1993
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
Neural processing of naturalistic optic flow
Kern, Journal of Neuroscience 21(), 2001
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly’s eye
Laughlin, Progress in Retinal and Eye Research 13(), 1994
Neural coding of naturalistic motion stimuli.
Lewen GD, Bialek W, de Ruyter van Steveninck RR., Network 12(3), 2001
PMID: 11563532
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proceedings of the Royal Society of London B 225(), 1985
Deciphering a neural code for vision.
Passaglia C, Dodge F, Herzog E, Jackson S, Barlow R., Proc. Natl. Acad. Sci. U.S.A. 94(23), 1997
PMID: 9356504
Neuronal responses in the motion pathway of the macaque monkey to natural optic flow stimuli.
Pekel M, Lappe M, Bremmer F, Thiele A, Hoffmann KP., Neuroreport 7(4), 1996
PMID: 8724666
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
Considerations on models of movement detection.
Poggio T, Reichardt W., Kybernetik 13(4), 1973
PMID: 4359479
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Visual analysis and image motion in locomoting cats.
Sherk H, Fowler GA., Eur. J. Neurosci. 13(6), 2001
PMID: 11285021
The accessory optic system.
Simpson JI., Annu. Rev. Neurosci. 7(), 1984
PMID: 6370078
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Angular sensitivity of blowfly photoreceptors: Intracellular measurements and wave-optical predictions
Smakman, Journal of Comparative Physiology A 155(), 1984
Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster.
Strauss R, Schuster S, Gotz KG., J. Exp. Biol. 200(Pt 9), 1997
PMID: 9172415
Blowfly flight and optic flow. II. Head movements during flight
van, Journal of Experimental Biology 202(), 1999
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12639604
PubMed | Europe PMC

Suchen in

Google Scholar