Filtering modules of finite projective dimension

Krause H, Solberg Ø (2003)
Forum Mathematicum 15(3): 377-393.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
For a right artinian ring Lambda we show that for every n greater than or equal to 0 there exists a pure-injective Lambda-module P-n such that the Lambda-modules of projective dimension at most n are precisely the direct factors of Lambda-modules having a finite filtration in products of copies of P-n. This is a consequence of a general description of certain contravariantly finite resolving subcategories of Mod Lambda. It leads in addition to a one-to-one correspondence between equivalence classes of (not necessarily finitely generated) cotilting modules and resolving subcategories of Mod Lambda which are closed under products and admit finite resolutions and special right approximations. As an application it is shown that every finitely presented partial cotilting module over an artin algebra admits a complement.
Erscheinungsjahr
Zeitschriftentitel
Forum Mathematicum
Band
15
Ausgabe
3
Seite(n)
377-393
ISSN
PUB-ID

Zitieren

Krause H, Solberg Ø. Filtering modules of finite projective dimension. Forum Mathematicum. 2003;15(3):377-393.
Krause, H., & Solberg, Ø. (2003). Filtering modules of finite projective dimension. Forum Mathematicum, 15(3), 377-393. doi:10.1515/form.2003.020
Krause, H., and Solberg, Ø. (2003). Filtering modules of finite projective dimension. Forum Mathematicum 15, 377-393.
Krause, H., & Solberg, Ø., 2003. Filtering modules of finite projective dimension. Forum Mathematicum, 15(3), p 377-393.
H. Krause and Ø. Solberg, “Filtering modules of finite projective dimension”, Forum Mathematicum, vol. 15, 2003, pp. 377-393.
Krause, H., Solberg, Ø.: Filtering modules of finite projective dimension. Forum Mathematicum. 15, 377-393 (2003).
Krause, Henning, and Solberg, Øyvind. “Filtering modules of finite projective dimension”. Forum Mathematicum 15.3 (2003): 377-393.