Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace

Ahlswede R, Aydinian H, Khachatrian LH (2003)
Combinatorica 23(1): 5-22.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
Autor
Erscheinungsjahr
Band
23
Ausgabe
1
Seite(n)
5-22
ISSN
PUB-ID

Zitieren

Ahlswede R, Aydinian H, Khachatrian LH. Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. Combinatorica. 2003;23(1):5-22.
Ahlswede, R., Aydinian, H., & Khachatrian, L. H. (2003). Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. Combinatorica, 23(1), 5-22. doi:10.1007/s00493-003-0011-6
Ahlswede, R., Aydinian, H., and Khachatrian, L. H. (2003). Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. Combinatorica 23, 5-22.
Ahlswede, R., Aydinian, H., & Khachatrian, L.H., 2003. Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. Combinatorica, 23(1), p 5-22.
R. Ahlswede, H. Aydinian, and L.H. Khachatrian, “Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace”, Combinatorica, vol. 23, 2003, pp. 5-22.
Ahlswede, R., Aydinian, H., Khachatrian, L.H.: Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. Combinatorica. 23, 5-22 (2003).
Ahlswede, Rudolf, Aydinian, Haratyun, and Khachatrian, Levon H. “Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace”. Combinatorica 23.1 (2003): 5-22.