Damped elastic recoil of the titin spring in myofibrils of human myocardium

Opitz CA, Kulke M, Leake MC, Neagoe C, Hinssen H, Hajjar RJ, Linke WA (2003)
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 100(22): 12688-12693.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Opitz, CA; Kulke, M; Leake, MC; Neagoe, C; Hinssen, HorstUniBi; Hajjar, RJ; Linke, WA
Abstract / Bemerkung
The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewton-range force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (V-p) of nonactivated cardio-myofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vp on release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin-titin interactions. Thus, Vp is determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vp to unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening.
Erscheinungsjahr
2003
Zeitschriftentitel
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Band
100
Ausgabe
22
Seite(n)
12688-12693
ISSN
0027-8424
eISSN
1091-6490
Page URI
https://pub.uni-bielefeld.de/record/1609788

Zitieren

Opitz CA, Kulke M, Leake MC, et al. Damped elastic recoil of the titin spring in myofibrils of human myocardium. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2003;100(22):12688-12693.
Opitz, C. A., Kulke, M., Leake, M. C., Neagoe, C., Hinssen, H., Hajjar, R. J., & Linke, W. A. (2003). Damped elastic recoil of the titin spring in myofibrils of human myocardium. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 100(22), 12688-12693. https://doi.org/10.1073/pnas.2133733100
Opitz, CA, Kulke, M, Leake, MC, Neagoe, C, Hinssen, Horst, Hajjar, RJ, and Linke, WA. 2003. “Damped elastic recoil of the titin spring in myofibrils of human myocardium”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 100 (22): 12688-12693.
Opitz, C. A., Kulke, M., Leake, M. C., Neagoe, C., Hinssen, H., Hajjar, R. J., and Linke, W. A. (2003). Damped elastic recoil of the titin spring in myofibrils of human myocardium. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 100, 12688-12693.
Opitz, C.A., et al., 2003. Damped elastic recoil of the titin spring in myofibrils of human myocardium. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 100(22), p 12688-12693.
C.A. Opitz, et al., “Damped elastic recoil of the titin spring in myofibrils of human myocardium”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 100, 2003, pp. 12688-12693.
Opitz, C.A., Kulke, M., Leake, M.C., Neagoe, C., Hinssen, H., Hajjar, R.J., Linke, W.A.: Damped elastic recoil of the titin spring in myofibrils of human myocardium. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 100, 12688-12693 (2003).
Opitz, CA, Kulke, M, Leake, MC, Neagoe, C, Hinssen, Horst, Hajjar, RJ, and Linke, WA. “Damped elastic recoil of the titin spring in myofibrils of human myocardium”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 100.22 (2003): 12688-12693.

51 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Work of Titin Protein Folding as a Major Driver in Muscle Contraction.
Eckels EC, Tapia-Rojo R, Rivas-Pardo JA, Fernández JM., Annu Rev Physiol 80(), 2018
PMID: 29433413
Force properties of skinned cardiac muscle following increasing volumes of aerobic exercise in rats.
Boldt KR, Rios JL, Joumaa V, Herzog W., J Appl Physiol (1985) 125(2), 2018
PMID: 29722623
Efficient inference of homologs in large eukaryotic pan-proteomes.
Sheikhizadeh Anari S, de Ridder D, Schranz ME, Smit S., BMC Bioinformatics 19(1), 2018
PMID: 30257640
De novo annotation of the transcriptome of the Northern Wheatear (Oenanthe oenanthe).
Frias-Soler RC, Villarín Pildaín L, Hotz-Wagenblatt A, Kolibius J, Bairlein F, Wink M., PeerJ 6(), 2018
PMID: 30498627
Influence of V54M mutation in giant muscle protein titin: a computational screening and molecular dynamics approach.
Thirumal Kumar D, George Priya Doss C, Sneha P, Tayubi IA, Siva R, Chakraborty C, Magesh R., J Biomol Struct Dyn 35(5), 2017
PMID: 27125723
A novel micro-to-macro approach for cardiac tissue mechanics.
Haddad SM, Samani A., Comput Methods Biomech Biomed Engin 20(2), 2017
PMID: 27460134
Hydraulic forces contribute to left ventricular diastolic filling.
Maksuti E, Carlsson M, Arheden H, Kovács SJ, Broomé M, Ugander M., Sci Rep 7(), 2017
PMID: 28256604
Intramolecular Cross-Linking: Addressing Mechanochemistry with a Bioinspired Approach.
Levy A, Wang F, Lang A, Galant O, Diesendruck CE., Angew Chem Int Ed Engl 56(23), 2017
PMID: 28464408
A map of the phosphoproteomic alterations that occur after a bout of maximal-intensity contractions.
Potts GK, McNally RM, Blanco R, You JS, Hebert AS, Westphall MS, Coon JJ, Hornberger TA., J Physiol 595(15), 2017
PMID: 28542873
Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide-Rich Environments.
Kelley JL, Arias-Rodriguez L, Patacsil Martin D, Yee MC, Bustamante CD, Tobler M., Mol Biol Evol 33(6), 2016
PMID: 26861137
Myocardial deformational adaptations to different forms of training: a real-time three-dimensional speckle tracking echocardiographic study.
Monte IP, Mangiafico S, Buccheri S, Bottari VE, Lavanco V, Arcidiacono AA, Leggio S, Deste W, Tamburino C., Heart Vessels 30(3), 2015
PMID: 24820450
A Ca(2+)-, Mg(2+)-, and Zn(2+)-Based Dendritic Contractile Nanodevice with Two pH-Dependent Motional Functions.
Stadler AM, Karmazin L, Bailly C., Angew Chem Int Ed Engl 54(48), 2015
PMID: 26463523
Genetic profiling for risk reduction in human cardiovascular disease.
Puckelwartz MJ, McNally EM., Genes (Basel) 5(1), 2014
PMID: 24705294
Aging does not affect radial viscoelastic behavior of the left ventricle.
Mangual JO, Föll D, Jung B, Pedrizzetti G, Kheradvar A., Cardiology 125(1), 2013
PMID: 23635990
Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum".
Liu Z, Müller J, Li T, Alvey RM, Vogl K, Frigaard NU, Rockwell NC, Boyd ES, Tomsho LP, Schuster SC, Henke P, Rohde M, Overmann J, Bryant DA., Genome Biol 14(11), 2013
PMID: 24267588
Contractile system of muscle as an auto-oscillator.
Ishiwata S, Shimamoto Y, Fukuda N., Prog Biophys Mol Biol 105(3), 2011
PMID: 21163290
Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart.
Knöll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, Ku CH, Neef S, Bug M, Schäfer K, Knöll G, Felkin LE, Wessels J, Toischer K, Hagn F, Kessler H, Didié M, Quentin T, Maier LS, Teucher N, Unsöld B, Schmidt A, Birks EJ, Gunkel S, Lang P, Granzier H, Zimmermann WH, Field LJ, Faulkner G, Dobbelstein M, Barton PJ, Sattler M, Wilmanns M, Chien KR., Circ Res 109(7), 2011
PMID: 21799151
Real-time measurement of the length of a single sarcomere in rat ventricular myocytes: a novel analysis with quantum dots.
Serizawa T, Terui T, Kagemoto T, Mizuno A, Shimozawa T, Kobirumaki F, Ishiwata S, Kurihara S, Fukuda N., Am J Physiol Cell Physiol 301(5), 2011
PMID: 21813712
Left intraventricular diastolic and systolic pressure gradients.
Guerra M, Sampaio F, Brás-Silva C, Leite-Moreira AF., Exp Biol Med (Maywood) 236(12), 2011
PMID: 22114063
Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium.
Fukushima H, Chung CS, Granzier H., J Biomed Biotechnol 2010(), 2010
PMID: 20414336
A "force buffer" protecting immunoglobulin titin.
Nunes JM, Hensen U, Ge L, Lipinsky M, Helenius J, Grubmüller H, Muller DJ., Angew Chem Int Ed Engl 49(20), 2010
PMID: 20354971
The giant protein titin as an integrator of myocyte signaling pathways.
Linke WA, Krüger M., Physiology (Bethesda) 25(3), 2010
PMID: 20551232
Titin-based mechanical signalling in normal and failing myocardium.
Krüger M, Linke WA., J Mol Cell Cardiol 46(4), 2009
PMID: 19639676
Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence.
Grützner A, Garcia-Manyes S, Kötter S, Badilla CL, Fernandez JM, Linke WA., Biophys J 97(3), 2009
PMID: 19651040
Is left ventricular volume during diastasis the real equilibrium volume, and what is its relationship to diastolic suction?
Zhang W, Chung CS, Shmuylovich L, Kovács SJ., J Appl Physiol (1985) 105(3), 2008
PMID: 17901239
The origin of passive force enhancement in skeletal muscle.
Joumaa V, Rassier DE, Leonard TR, Herzog W., Am J Physiol Cell Physiol 294(1), 2008
PMID: 17928540
Passive force enhancement in single myofibrils.
Joumaa V, Rassier DE, Leonard TR, Herzog W., Pflugers Arch 455(2), 2007
PMID: 17551750
Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.
Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE., Biophys J 90(10), 2006
PMID: 16500961
The Titan can help titin: from micro to macro myocardial elasticity.
Ferrazzi P, Iascone MR, Senni M, Quaini E., J Cardiovasc Med (Hagerstown) 7(3), 2006
PMID: 16645378
Mechanical properties of cardiac titin's N2B-region by single-molecule atomic force spectroscopy.
Leake MC, Grützner A, Krüger M, Linke WA., J Struct Biol 155(2), 2006
PMID: 16682230
Plasticity of cardiac titin/connectin in heart development.
Opitz CA, Linke WA., J Muscle Res Cell Motil 26(6-8), 2005
PMID: 16465471
Auto-oscillations of skinned myocardium correlating with heartbeat.
Sasaki D, Fujita H, Fukuda N, Kurihara S, Ishiwata S., J Muscle Res Cell Motil 26(2-3), 2005
PMID: 15999228
Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
Prado LG, Makarenko I, Andresen C, Krüger M, Opitz CA, Linke WA., J Gen Physiol 126(5), 2005
PMID: 16230467
Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart.
Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA., Circ Res 94(7), 2004
PMID: 14988228
The elasticity of single titin molecules using a two-bead optical tweezers assay.
Leake MC, Wilson D, Gautel M, Simmons RM., Biophys J 87(2), 2004
PMID: 15298915
Multiple sources of passive stress relaxation in muscle fibres.
Linke WA, Leake MC., Phys Med Biol 49(16), 2004
PMID: 15446792
Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts.
Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA., Circ Res 95(7), 2004
PMID: 15345656
Titin isoform-dependent effect of calcium on passive myocardial tension.
Fujita H, Labeit D, Gerull B, Labeit S, Granzier HL., Am J Physiol Heart Circ Physiol 287(6), 2004
PMID: 15548726

39 References

Daten bereitgestellt von Europe PubMed Central.

Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity.
Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S., Circ. Res. 86(11), 2000
PMID: 10850961
Titin isoform switch in ischemic human heart disease.
Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar RJ, Linke WA., Circulation 106(11), 2002
PMID: 12221049
Cardiac titin: an adjustable multi-functional spring.
Granzier H, Labeit S., J. Physiol. (Lond.) 541(Pt 2), 2002
PMID: 12042342
Role of titin in vertebrate striated muscle.
Tskhovrebova L, Trinick J., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357(1418), 2002
PMID: 11911777
Steered molecular dynamics and mechanical functions of proteins.
Isralewitz B, Gao M, Schulten K., Curr. Opin. Struct. Biol. 11(2), 2001
PMID: 11297932
Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.
Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM., Prog. Biophys. Mol. Biol. 74(1-2), 2000
PMID: 11106807
Single molecule measurements of titin elasticity.
Wang K, Forbes JG, Jin AJ., Prog. Biophys. Mol. Biol. 77(1), 2001
PMID: 11473785
Stretching and visualizing titin molecules: combining structure, dynamics and mechanics.
Kellermayer MS, Grama L., J. Muscle Res. Cell. Motil. 23(5-6), 2002
PMID: 12785100
Reverse engineering of the giant muscle protein titin.
Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE, Fernandez JM., Nature 418(6901), 2002
PMID: 12198551
The physiological role of titin in striated muscle.
Horowits R., Rev. Physiol. Biochem. Pharmacol. 138(), 1999
PMID: 10396138
Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils.
Kulke M, Fujita-Becker S, Rostkova E, Neagoe C, Labeit D, Manstein DJ, Gautel M, Linke WA., Circ. Res. 89(10), 2001
PMID: 11701614
The cellular basis of the length-tension relation in cardiac muscle.
Allen DG, Kentish JC., J. Mol. Cell. Cardiol. 17(9), 1985
PMID: 3900426
Passive and active tension in single cardiac myofibrils.
Linke WA, Popov VI, Pollack GH., Biophys. J. 67(2), 1994
PMID: 7948691
Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle.
Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H., J. Mol. Cell. Cardiol. 32(12), 2000
PMID: 11112991
Effect of muscle length on the force-velocity relationship of tetanized cardiac muscle.
Forman R, Ford LE, Sonnenblick EH., Circ. Res. 31(2), 1972
PMID: 5049737
An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium.
de Tombe PP, ter Keurs HE., J. Physiol. (Lond.) 454(), 1992
PMID: 1474506
Actin-titin interaction in cardiac myofibrils: probing a physiological role.
Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M., Biophys. J. 73(2), 1997
PMID: 9251807
Titin-based contribution to shortening velocity of rabbit skeletal myofibrils.
Minajeva A, Neagoe C, Kulke M, Linke WA., J. Physiol. (Lond.) 540(Pt 1), 2002
PMID: 11927678

AUTHOR UNKNOWN, 1987
Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time.
Daniels M, Noble MI, ter Keurs HE, Wohlfart B., J. Physiol. (Lond.) 355(), 1984
PMID: 6491996
Regulation of contraction in striated muscle.
Gordon AM, Homsher E, Regnier M., Physiol. Rev. 80(2), 2000
PMID: 10747208
A Ca2+-dependent actin modulator from vertebrate smooth muscle.
Hinssen H, Small JV, Sobieszek A., FEBS Lett. 166(1), 1984
PMID: 6537923
Titin determines the Frank-Starling relation in early diastole.
Helmes M, Lim CC, Liao R, Bharti A, Cui L, Sawyer DB., J. Gen. Physiol. 121(2), 2003
PMID: 12566538
Nature of PEVK-titin elasticity in skeletal muscle.
Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B., Proc. Natl. Acad. Sci. U.S.A. 95(14), 1998
PMID: 9653138
Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure.
Turner SW, Cabodi M, Craighead HG., Phys. Rev. Lett. 88(12), 2002
PMID: 11909505

AUTHOR UNKNOWN, 1986
Isometric tension development and its calcium sensitivity in skinned myocyte-sized preparations from different regions of the human heart.
van der Velden J, Klein LJ, van der Bijl M, Huybregts MA, Stooker W, Witkop J, Eijsman L, Visser CA, Visser FC, Stienen GJ., Cardiovasc. Res. 42(3), 1999
PMID: 10533611

AUTHOR UNKNOWN, 2002
Sarcomere dynamics in cat cardiac trabeculae.
de Tombe PP, ter Keurs HE., Circ. Res. 68(2), 1991
PMID: 1991357
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 14563922
PubMed | Europe PMC

Suchen in

Google Scholar