Semiharmonic trees and monocyclic graphs

Dress A, Grünewald S (2003)
Applied Mathematics Letters 16(8): 1329-1332.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dress, AndreasUniBi; Grünewald, Stefan
Abstract / Bemerkung
A graph G is defined to be semiharmonic if there is a constant mu (necessarily a natural number) such that, for every vertex v, the number of walks of length 3 starting in v equals mud(G)(v) where d(G)(v) is the degree of v. We determine all finite semiharmonic trees and monocyclic graphs. (C) 2003 Elsevier Ltd. All rights reserved.
Stichworte
walks in graphs; trees; monocyclic graph; cyclomatic; number; harmonic graphs
Erscheinungsjahr
2003
Zeitschriftentitel
Applied Mathematics Letters
Band
16
Ausgabe
8
Seite(n)
1329-1332
ISSN
0893-9659
Page URI
https://pub.uni-bielefeld.de/record/1609774

Zitieren

Dress A, Grünewald S. Semiharmonic trees and monocyclic graphs. Applied Mathematics Letters. 2003;16(8):1329-1332.
Dress, A., & Grünewald, S. (2003). Semiharmonic trees and monocyclic graphs. Applied Mathematics Letters, 16(8), 1329-1332. https://doi.org/10.1016/S0893-9659(03)90137-6
Dress, A., and Grünewald, S. (2003). Semiharmonic trees and monocyclic graphs. Applied Mathematics Letters 16, 1329-1332.
Dress, A., & Grünewald, S., 2003. Semiharmonic trees and monocyclic graphs. Applied Mathematics Letters, 16(8), p 1329-1332.
A. Dress and S. Grünewald, “Semiharmonic trees and monocyclic graphs”, Applied Mathematics Letters, vol. 16, 2003, pp. 1329-1332.
Dress, A., Grünewald, S.: Semiharmonic trees and monocyclic graphs. Applied Mathematics Letters. 16, 1329-1332 (2003).
Dress, Andreas, and Grünewald, Stefan. “Semiharmonic trees and monocyclic graphs”. Applied Mathematics Letters 16.8 (2003): 1329-1332.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar